login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289789
p-INVERT of A016777, where p(S) = 1 - S - S^2.
3
1, 6, 26, 111, 460, 1905, 7910, 32880, 136675, 568050, 2360825, 9811650, 40777750, 169474875, 704348000, 2927312625, 12166086250, 50562982500, 210142784375, 873366003750, 3629761440625, 15085506018750, 62696266831250, 260569441284375, 1082942209562500
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
FORMULA
G.f.: (-1 - x - x^2 - 6 x^3)/(-1 + 5 x - 5 x^2 + 5 x^3 + 5 x^4).
a(n) = 5*a(n-1) - 5*a(n-2) + 5*a(n-3) + 5*a(n-4).
MATHEMATICA
z = 60; s = x (1 + 2*x)/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A016777 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289789 *)
CROSSREFS
Sequence in context: A267578 A255467 A145374 * A124465 A287806 A164549
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 11 2017
STATUS
approved