login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255467 a(n) = A255466(2^n-1). 2
1, 6, 26, 110, 450, 1822, 7330, 29406, 117794, 471518, 1886754, 7548382, 30196258, 120790494, 483172898, 1932713438, 7730897442, 30923677150, 123694883362, 494779882974, 1979120230946, 7916482321886, 31665932083746, 126663733927390, 506654946894370, 2026619809947102, 8106479284527650, 32425917227589086 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.

N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.

Index entries for sequences related to cellular automata

Index entries for linear recurrences with constant coefficients, signature (5,-2,-8).

FORMULA

G.f.: (1+2*x)*(1-x) / ((1-4*x)*(1-2*x)*(1+x)).

From Colin Barker, Feb 04 2017: (Start)

a(n) = (-2*(-1)^n/15 - 2^(1+n)/3 + (9*4^n)/5).

a(n) = 5*a(n-1) - 2*a(n-2) - 8*a(n-3) for n>2.

(End)

MATHEMATICA

CoefficientList[Series[(1 + 2*x)*(1 - x)/((1 - 4*x)*(1 - 2*x)*(1 + x)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Feb 04 2017 *)

PROG

(PARI) Vec((1+2*x)*(1-x) / ((1-4*x)*(1-2*x)*(1+x)) + O(x^30)) \\ Colin Barker, Feb 04 2017

CROSSREFS

Cf. A255466.

Sequence in context: A079675 A113991 A267578 * A145374 A289789 A124465

Adjacent sequences:  A255464 A255465 A255466 * A255468 A255469 A255470

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane and Doron Zeilberger, Feb 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 14:45 EDT 2019. Contains 328019 sequences. (Running on oeis4.)