
COMMENTS

A friend from Germany remarks that the sequence 9, 99, 999, 9999, 99999, 999999, ... might be called the grumpy German sequence: nein!, nein! nein!, nein! nein! nein!, ...
The Regan link shows that integers of the form 10^n 1 have binary representations with exactly n trailing 1 bits. Also those integers have quinary expressions with exactly n trailing 4's. For example, 10^4 1 = (304444)5. The first digits in quinary correspond to the number 2^n 1, in our example (30)5 = 2^4 1. A similar pattern occurs in the binary case. Consider 9 = (1001)2.  Washington Bomfim Dec 23 2010
a(n) is the number of positive integers with less than n+1 digits.  Bui Quang Tuan, Mar 09 2015
From Peter Bala, Sep 27 2015: (Start)
For n >= 1, the simple continued fraction expansion of sqrt(a(2*n)) = [10^n  1; 1, 2*(10^n  1), 1, 2*(10^n  1), ...] has period 2. The simple continued fraction expansion of sqrt(a(2*n))/a(n) = [1; 10^n  1, 2, 10^n  1, 2, ...] also has period 2. Note the occurrence of large partial quotients in both expansions.
A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions.
Empirically, we also see the presence of unexpectedly large partial quotients early in the continued fraction expansions of the mth roots of the numbers a(m*n) for m >= 3. Some typical examples are given below. (End)


EXAMPLE

From Peter Bala, Sep 27 2015: (Start)
Continued fraction expansions showing large partial quotients:
a(12)^(1/3) = [9999; 1, 299999998, 1, 9998, 1, 449999998, 1, 7998, 1, 535714284, 1, 2, 2, 142, 2, 2, 1, 599999999, 3, 1, 1,...].
Compare with a(30)^(1/3) = [9999999999; 1, 299999999999999999998, 1, 9999999998, 1, 449999999999999999998, 1, 7999999998, 1, 535714285714285714284, 1, 2, 2, 142857142, 2, 2, 1, 599999999999999999999, 3, 1, 1,...].
a(24)^(1/4) = [999999; 1, 3999999999999999998, 1, 666665, 1, 1, 1, 799999999999999999, 3, 476190, 7, 190476190476190476, 21, 43289, 1, 229, 1, 1864801864801863, 1, 4, 6,...].
Compare with a(48)^(1/4) = [999999999999; 1, 3999999999999999999999999999999999998, 1, 666666666665, 1, 1, 1, 799999999999999999999999999999999999, 3, 476190476190, 7, 190476190476190476190476190476190476, 21, 43290043289, 1, 229, 1, 1864801864801864801864801864801863, 1, 4, 6,...].
a(25)^(1/5) = [99999, 1, 499999999999999999998, 1, 49998, 1, 999999999999999999998, 1, 33332, 3, 151515151515151515151, 5, 1, 1, 1947, 1, 1, 38, 3787878787878787878, 1, 3, 5,...].
(End)
