login
A178630
a(n) = 18 * ((10^n - 1)/9)^2.
15
18, 2178, 221778, 22217778, 2222177778, 222221777778, 22222217777778, 2222222177777778, 222222221777777778, 22222222217777777778, 2222222222177777777778, 222222222221777777777778
OFFSET
1,1
FORMULA
a(n) = 18*A002477(n) = A002283(n)*A002276(n).
a(n)=((A002276(n-1)*10 + 1)*10^(n-1) + A002281(n-1))*10 + 8.
G.f.: 18*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
EXAMPLE
n=1: ..................... 18 = 9 * 2;
n=2: ................... 2178 = 99 * 22;
n=3: ................. 221778 = 999 * 222;
n=4: ............... 22217778 = 9999 * 2222;
n=5: ............. 2222177778 = 99999 * 22222;
n=6: ........... 222221777778 = 999999 * 222222;
n=7: ......... 22222217777778 = 9999999 * 2222222;
n=8: ....... 2222222177777778 = 99999999 * 22222222;
n=9: ..... 222222221777777778 = 999999999 * 222222222.
MATHEMATICA
Table[18*((10^n-1)/9)^2, {n, 1, 20}] (* G. C. Greubel, Jan 28 2019 *)
PROG
(Magma) [18*((10^n - 1)/9)^2: n in [1..20]]; // Vincenzo Librandi, Dec 28 2010
(PARI) a(n)=18*(10^n\9)^2 \\ Charles R Greathouse IV, Aug 21 2011
(Sage) [18*((10^n-1)/9)^2 for n in (1..20)] # G. C. Greubel, Jan 28 2019
(GAP) List([1..20], n -> 18*((10^n-1)/9)^2); # G. C. Greubel, Jan 28 2019
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 31 2010
STATUS
approved