The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178628 A (1,1) Somos-4 sequence associated to the elliptic curve E: y^2 - x*y - y = x^3 + x^2 + x. 1
 1, 1, -1, -4, -3, 19, 67, -40, -1243, -4299, 25627, 334324, 627929, -29742841, -372632409, 1946165680, 128948361769, 1488182579081, -52394610324649, -2333568937567764, -5642424912729707, 3857844273728205019 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f. 1/(1-x^2/(1-x^2/(1-4x^2/(1+(3/16)x^2/(1-(76/9)x^2/(1-(201/361)x^2/(1-... where 1,4,-3/16,76/9,201/361,... are the x-coordinates of the multiples of z=(0,0) on E:y^2-xy-y=x^3+x^2+x. LINKS G. C. Greubel, Table of n, a(n) for n = 0..155 Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019. FORMULA a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>3. MATHEMATICA RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 1, a[2] == -1, a[3] == -4}, a, {n, 0, 30}] (* G. C. Greubel, Sep 18 2018 *) PROG (PARI) a(n)=local(E, z); E=ellinit([ -1, 1, -1, 1, 0]); z=ellpointtoz(E, [0, 0]); round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2)) (PARI) m=30; v=concat([1, 1, -1, -4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018 (MAGMA) I:=[1, 1, -1, -4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018 CROSSREFS Sequence in context: A183231 A241358 A178417 * A167479 A278424 A278662 Adjacent sequences:  A178625 A178626 A178627 * A178629 A178630 A178631 KEYWORD easy,sign AUTHOR Paul Barry, May 31 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 17:32 EDT 2020. Contains 338027 sequences. (Running on oeis4.)