login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178077
A (4,-8) Somos-4 sequence.
3
1, 2, 4, -16, -256, -3072, -81920, -524288, 184549376, 20401094656, 3848290697216, 932385860354048, -229683580995895296, -514202991054653751296, -608004684669466821263360, -1669526556887802890269229056, -2074787505842297340730932199424, 33552176086840775798814740439891968
OFFSET
0,2
COMMENTS
Hankel transform of A178076.
LINKS
FORMULA
a(n) = (4*a(n-1)*a(n-3) - 8*a(n-2)^2)/a(n-4), n>=4.
MATHEMATICA
RecurrenceTable[{a[n] == (4*a[n-1]*a[n-3] -8*a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 2, a[2] == 4, a[3] == -16}, a, {n, 0, 30}] (* G. C. Greubel, Sep 18 2018 *)
PROG
(PARI) m=30; v=concat([1, 2, 4, -16], vector(m-4)); for(n=5, m, v[n] = ( 4*v[n-1]*v[n-3] -8*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
(Magma) I:=[1, 2, 4, -16]; [n le 4 select I[n] else (4*Self(n-1)*Self(n-3) - 8*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
CROSSREFS
Sequence in context: A071008 A299535 A220169 * A218148 A112535 A001146
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 19 2010
EXTENSIONS
More terms from G. C. Greubel, Sep 18 2018
STATUS
approved