login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178075
A (1,2) Somos-4 sequence.
3
0, 1, 1, -2, 1, 9, -16, -73, -145, 1442, 3951, -49121, 273184, 4095073, -13134671, -609740514, -7877081935, 206841213449, 153991537616, -138343392420553, 3626684171795871, 187758843981508546, 2146096698964614559
OFFSET
0,4
COMMENTS
Hankel transform of A178074 is a(n+2).
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -2, z = 1. - Michael Somos, Aug 06 2014
LINKS
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
FORMULA
a(n) = (a(n-1)*a(n-3) + 2*a(n-2)^2)/a(n-4), n>=4.
a(-n) = -a(n). - Michael Somos, Aug 06 2014
MATHEMATICA
Join[{0}, RecurrenceTable[{a[n] == (a[n - 1]*a[n - 3] + 2*a[n - 2]^2)/a[n - 4], a[1] == 1, a[2] == 1, a[3] == -2, a[4] == 1}, a, {n, 1, 50}]] (* G. C. Greubel, Sep 22 2018 *)
PROG
(Magma) I:=[0, 1, 1, -2, 1]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)+2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 07 2014
(PARI) m=50; v=concat([1, 1, -2, 1], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] + 2*v[n-2]^2)/v[n-4]); concat([0], v) \\ G. C. Greubel, Sep 22 2018
CROSSREFS
Sequence in context: A058876 A214884 A083162 * A221756 A094633 A261060
KEYWORD
easy,sign,changed
AUTHOR
Paul Barry, May 19 2010
EXTENSIONS
Added missing a(0)=0 and a(1)=1. - Michael Somos, Aug 06 2014
STATUS
approved