Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 05 2025 19:51:39
%S 0,1,1,-2,1,9,-16,-73,-145,1442,3951,-49121,273184,4095073,-13134671,
%T -609740514,-7877081935,206841213449,153991537616,-138343392420553,
%U 3626684171795871,187758843981508546,2146096698964614559
%N A (1,2) Somos-4 sequence.
%C Hankel transform of A178074 is a(n+2).
%C This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -2, z = 1. - _Michael Somos_, Aug 06 2014
%H G. C. Greubel, <a href="/A178075/b178075.txt">Table of n, a(n) for n = 0..150</a>
%H Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.
%H C. Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/17-1/kimberling1.pdf">Strong divisibility sequences and some conjectures</a>, Fib. Quart., 17 (1979), 13-17.
%F a(n) = (a(n-1)*a(n-3) + 2*a(n-2)^2)/a(n-4), n>=4.
%F a(-n) = -a(n). - _Michael Somos_, Aug 06 2014
%t Join[{0}, RecurrenceTable[{a[n] == (a[n - 1]*a[n - 3] + 2*a[n - 2]^2)/a[n - 4], a[1] == 1, a[2] == 1, a[3] == -2, a[4] == 1}, a, {n, 1, 50}]] (* _G. C. Greubel_, Sep 22 2018 *)
%o (Magma) I:=[0,1,1,-2,1]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)+2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Aug 07 2014
%o (PARI) m=50; v=concat([1,1,-2,1], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] + 2*v[n-2]^2)/v[n-4]); concat([0], v) \\ _G. C. Greubel_, Sep 22 2018
%K easy,sign,changed
%O 0,4
%A _Paul Barry_, May 19 2010
%E Added missing a(0)=0 and a(1)=1. - _Michael Somos_, Aug 06 2014