OFFSET
0,5
COMMENTS
Hankel transform of A178078 is a(n+2).
Apparently a(n) = -A174400(n+1). - R. J. Mathar, Dec 10 2010
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = 2. - Michael Somos, Aug 06 2014
Associated with elliptic curve "61a1" y^2 + x*y = x^3 - 2*x + 1 and point (1, -1). - Michael Somos, Sep 27 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..150
Paul Barry, Integer sequences from elliptic curves, arXiv:2306.05025 [math.NT], 2023.
Clark Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
FORMULA
a(n) = (a(n-1)*a(n-3) - a(n-2)^2)/a(n-4), n>=4.
a(n) = -a(-n) for all n in Z. - Michael Somos, Aug 06 2014
0 = a(n)*a(n+5) - a(n+1)*a(n+4) + 2*a(n+2)*a(n+3) for all n in Z. - Michael Somos, Sep 27 2018
MATHEMATICA
Join[{0}, RecurrenceTable[{a[n] == (a[n - 1]*a[n - 3] - a[n - 2]^2)/a[n - 4], a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 2}, a, {n, 1, 50}]] (* G. C. Greubel, Sep 22 2018 *)
nxt[{a_, b_, c_, d_}]:={b, c, d, (d*b-c^2)/a}; Join[{0}, NestList[nxt, {1, 1, 1, 2}, 30][[;; , 1]]] (* Harvey P. Dale, Sep 27 2023 *)
PROG
(Magma) I:=[0, 1, 1, 1, 2]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)-Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 07 2014
(PARI) m=50; v=concat([1, 1, 1, 2], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] - v[n-2]^2)/v[n-4]); concat([0], v) \\ G. C. Greubel, Sep 22 2018
(PARI) {a(n) = my(E = ellinit([1, 0, 0, -2, 1]), z = ellpointtoz(E, [1, -1])); round( ellsigma(E, n*z) / ellsigma(E, z)^n^2)}; /* Michael Somos, Sep 27 2018 */
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 19 2010
EXTENSIONS
Missing a(0)=0 and a(1)=1 added by Michael Somos, Aug 06 2014
More terms from Vincenzo Librandi, Aug 07 2014
STATUS
approved