login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178082
Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.
1
3, 21, 39, 165, 297, 375, 417, 651, 693, 1131, 1887, 2601, 3129, 3147, 3213, 3609, 3783, 3885, 4203, 4455, 5061, 6345, 6969, 8757, 10269, 11067, 12597, 13443, 13899, 14445, 15453, 15939, 16209, 16545, 17763, 19569, 19827, 20223, 21969, 23307
OFFSET
1,1
LINKS
FORMULA
a(n) = A173037(n+1)/5.
EXAMPLE
The associated prime quadruplets start as:
. 11, 13, 17, 19; (for n = 3)
. 101, 103, 107, 109; (for n = 21)
. 191, 193, 197, 199; (for n = 39)
. 821, 823, 827, 829;
. 1481, 1483, 1487, 1489;
. 1871, 1873, 1877, 1879;
. 2081, 2083, 2087, 2089;
. 3251, 3253, 3257, 3259;
. 3461, 3463, 3467, 3469;
. 5651, 5653, 5657, 5659;
. 9431, 9433, 9437, 9439;
. 13001, 13003, 13007, 13009;
. 15641, 15643, 15647, 15649;
. 15731, 15733, 15737, 15739;
. 16061, 16063, 16067, 16069;
. 18041, 18043, 18047, 18049;
. 18911, 18913, 18917, 18919;
. 19421, 19423, 19427, 19429.
MATHEMATICA
Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]
Select[Range[25000], AllTrue[5#+{4, 2, -2, -4}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2018 *)
PROG
(Magma) [n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; Vincenzo Librandi, Nov 30 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 19 2010
STATUS
approved