login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.
1

%I #18 Sep 08 2022 08:45:53

%S 3,21,39,165,297,375,417,651,693,1131,1887,2601,3129,3147,3213,3609,

%T 3783,3885,4203,4455,5061,6345,6969,8757,10269,11067,12597,13443,

%U 13899,14445,15453,15939,16209,16545,17763,19569,19827,20223,21969,23307

%N Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.

%H Vincenzo Librandi, <a href="/A178082/b178082.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A173037(n+1)/5.

%e The associated prime quadruplets start as:

%e . 11, 13, 17, 19; (for n = 3)

%e . 101, 103, 107, 109; (for n = 21)

%e . 191, 193, 197, 199; (for n = 39)

%e . 821, 823, 827, 829;

%e . 1481, 1483, 1487, 1489;

%e . 1871, 1873, 1877, 1879;

%e . 2081, 2083, 2087, 2089;

%e . 3251, 3253, 3257, 3259;

%e . 3461, 3463, 3467, 3469;

%e . 5651, 5653, 5657, 5659;

%e . 9431, 9433, 9437, 9439;

%e . 13001, 13003, 13007, 13009;

%e . 15641, 15643, 15647, 15649;

%e . 15731, 15733, 15737, 15739;

%e . 16061, 16063, 16067, 16069;

%e . 18041, 18043, 18047, 18049;

%e . 18911, 18913, 18917, 18919;

%e . 19421, 19423, 19427, 19429.

%t Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]

%t Select[Range[25000],AllTrue[5#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 03 2018 *)

%o (Magma) [n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; _Vincenzo Librandi_, Nov 30 2010

%Y Cf. A007811, A024897, A024896.

%K nonn,easy

%O 1,1

%A _Roger L. Bagula_, May 19 2010