login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227241
a(n) = sigma(n)*( 2*sigma(n)+1 ).
1
3, 21, 36, 105, 78, 300, 136, 465, 351, 666, 300, 1596, 406, 1176, 1176, 1953, 666, 3081, 820, 3570, 2080, 2628, 1176, 7260, 1953, 3570, 3240, 6328, 1830, 10440, 2080, 8001, 4656, 5886, 4656, 16653, 2926, 7260, 6328, 16290, 3570, 18528, 3916, 14196, 12246
OFFSET
1,1
COMMENTS
If n is prime, then a(n) = (n + 1)*(2n + 3). - Wesley Ivan Hurt, May 14 2021
LINKS
FORMULA
a(n) = sigma(n)*( 2*sigma(n)+1 ) = A014105(A000203(n)).
MAPLE
A227241 := proc(n)
numtheory[sigma](n) ;
%*(2*%+1) ;
end proc:
seq(A227241(n), n=1..80) ; # R. J. Mathar, Jul 07 2013
MATHEMATICA
Table[DivisorSigma[1, n]*(2*DivisorSigma[1, n] + 1), {n, 1, 50}] (* G. C. Greubel, Oct 01 2017 *)
#(2#+1)&/@DivisorSigma[1, Range[50]] (* Harvey P. Dale, Aug 20 2024 *)
PROG
(PARI) for(n=1, 50, print1(sigma(n)*(2*sigma(n) + 1), ", ")) \\ G. C. Greubel, Oct 01 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jul 03 2013
STATUS
approved