login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087690
Denominators of successive partial sums of sum(1/(2^n-1)).
2
1, 3, 21, 35, 1085, 9765, 1240155, 21082635, 1539032355, 16929355905, 34654391537535, 150169029995985, 1230034524697113135, 17630494853991954935, 2662204722952785195185, 410511968279319477097527
OFFSET
1,2
LINKS
FORMULA
a(n) = a(n-1) (2^n - 1)/gcd(a(n-1) (2^n-1), (2^n-1) A087689(n-1) + a(n-1)). - Robert Israel, Dec 28 2012
EXAMPLE
a(4)=35 because 1/1 + 1/3 + 1/7 + 1/15 = 54/35.
MAPLE
a:= n -> denom(add(1/(2^i-1), i=1..n)); // Robert Israel, Dec 28 2012
MATHEMATICA
f[n_] := Denominator[Sum[1/(2^i - 1), {i, n}]]; Array[f, 16] (* Robert G. Wilson v, May 25 2011 *)
Denominator[Accumulate[1/(2^Range[20]-1)]] (* Harvey P. Dale, Dec 28 2012 *)
CROSSREFS
Sequence in context: A100986 A213141 A075732 * A191763 A227241 A076169
KEYWORD
frac,nonn
AUTHOR
Keenan Pepper, Sep 27 2003
EXTENSIONS
More terms from Ray Chandler, Oct 26 2003
STATUS
approved