login
A178084
Numbers k for which 10k + 1, 10k + 3, 10k + 7, 10k + 9 and 10k + 13 are primes.
2
1, 10, 148, 1606, 1942, 2101, 2227, 4378, 5533, 14416, 16570, 16684, 19573, 20182, 22534, 24760, 26881, 32614, 34798, 36121, 39775, 46516, 51880, 53644, 63346, 63379, 66109, 76819, 79579, 82972, 85795, 87601, 95854, 100885, 102250, 106396
OFFSET
1,2
COMMENTS
These primes sets are just like 3k-4 and 3k-2 (or 6k-1 and 6*k+1) prime pairs, only five in a row.
LINKS
EXAMPLE
k = 1: 11, 13, 17, 19, 23,
k = 10: 101, 103, 107, 109, 113,
k = 148: 1481, 1483, 1487, 1489, 1493,
k = 1606: 16061, 16063, 16067, 16069, 16073,
k = 1942: 19421, 19423, 19427, 19429, 19433,
k = 2101: 21011, 21013, 21017, 21019, 21023,
k = 2227: 22271, 22273, 22277, 22279, 22283
MATHEMATICA
Flatten[Table[If[PrimeQ[10* n + 1] && PrimeQ[10*n + 3] && PrimeQ[10*n + 7] && PrimeQ[10*n + 9] && PrimeQ[10*(n + 1) + 3], n, {}], {n, 0, 50000}]]
PROG
(Magma) [n: n in [0..1000]| IsPrime(10*n+1) and IsPrime(10*n+3) and IsPrime(10*n+7) and IsPrime(10*n+9) and IsPrime(10*n+13)] // Vincenzo Librandi, Nov 30 2010
CROSSREFS
Cf. A007811.
Sequence in context: A295524 A095889 A097638 * A098270 A262738 A271467
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 19 2010
EXTENSIONS
More terms from Vincenzo Librandi, May 23 2010
STATUS
approved