login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178087
G.f. satisfies: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} A(k*x).
2
1, 1, 2, 6, 25, 141, 1071, 11011, 154739, 3005187, 81434048, 3101253384, 166823865867, 12719913809811, 1378095292930494, 212524751143894194, 46713381928627546015, 14648866052370410611923, 6558913185973371123604314, 4195585528812861561212654010
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 141*x^5 +...
where
A(x) = 1 + x*A(x) + x^2*A(x)*A(2*x) + x^3*A(x)*A(2*x)*A(3*x) + x^4*A(x)*A(2*x)*A(3*x)*A(4*x) + x^5*A(x)*A(2*x)*A(3*x)*A(4*x)*A(5*x) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*prod(k=1, m, subst(A, x, k*x+x*O(x^n))))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A230317.
Sequence in context: A007815 A195259 A292748 * A109286 A009466 A372892
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 19 2010
STATUS
approved