login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174400
Hankel transform of A174399.
3
1, 0, -1, -1, -1, -2, -1, 3, 7, 8, 25, 37, -47, -318, -559, -2023, -7039, 496, 90431, 314775, 1139599, 8007614, 13512079, -154788437, -1247862041, -5097732072, -56844671623, -290379801907, 1403230649825, 32188159859842
OFFSET
0,6
COMMENTS
Essentially a (1,-1) Somos-4 sequence.
LINKS
FORMULA
a(n) = (a(n-1)*a(n-3) - a(n-2)^2)/a(n-4), n>=6.
a(n) = -a(2-n), a(n)*a(n+5) = a(n+1)*a(n+4) - 2*a(n+2)*a(n+3) for all n in Z. - Michael Somos, Sep 26 2018
MATHEMATICA
nxt[{a_, b_, c_, d_}]:={b, c, d, (d*b-c^2)/a}; Join[{1, 0}, NestList[nxt, {-1, -1, -1, -2}, 30][[All, 1]]] (* Harvey P. Dale, Sep 07 2017 *)
Join[{1, 0}, RecurrenceTable[{a[n] == (a[n-1]*a[n-3] -a[n-2]^2)/a[n-4], a[2] == -1, a[3] == -1, a[4] == -1, a[5] == -2}, a, {n, 2, 50}]] (* G. C. Greubel, Sep 25 2018 *)
PROG
(PARI) m=20; v=concat([-1, -1, -1, -2], vector(m-4)); for(n=5, m, v[n] = ( 100*v[n-1]*v[n-3] - 196*v[n-2]^2)/v[n-4]); concat([1, 0], v) \\ G. C. Greubel, Sep 25 2018
(Magma) I:=[-1, -1, -1, -2]; [1, 0] cat [n le 4 select I[n] else (Self(n-1)*Self(n-3) - Self(n-2)^2)/Self(n-4): n in [1..20]]; // G. C. Greubel, Sep 25 2018
CROSSREFS
Sequence in context: A201615 A033640 A112027 * A178079 A258987 A174254
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 18 2010
STATUS
approved