login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174399
Expansion of (1-x-x^2-sqrt(1-2x-5x^2+10x^3+x^4))/(2x^2).
2
1, -1, 1, -2, 2, -6, 5, -21, 14, -79, 43, -308, 147, -1221, 571, -4868, 2514, -19388, 12144, -76814, 61681, -302007, 318597, -1177274, 1640389, -4553897, 8333655, -17533572, 41583474, -67607944, 203455513, -263678119, 975780382
OFFSET
0,4
COMMENTS
G.f. A(x) satisfies A(x)=1-2x+x*A(x)+x^2*A(x)+x^2*A(x)^2.
Hankel transform is the (essentially) (1,-1) Somos-4 sequence A174400.
LINKS
FORMULA
G.f.: (1-x-x^2-sqrt(1-2x-5x^2+10x^3+x^4))/(2x^2).
D-finite with recurrence: (n+2)*a(n) -(2*n+1)*a(n-1) +5*(1-n)*a(n-2) +5*(2*n-5)*a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
Recurrence verified using d.e. (x^5+10*x^4-5*x^3-2*x^2+x) y'' + (5*x^3-5*x^2-3*x+2) y' + 2*x^3-4*x^2+6*x-2 = 0 satisfied by the G.f. - Robert Israel, Jul 21 2019
MAPLE
f:= gfun:-rectoproc({(n+2)*a(n) -(2*n+1)*a(n-1) +5*(1-n)*a(n-2) +5*(2*n-5)*a(n-3) +(n-4)*a(n-4)=0, a(0)=1, a(1)=-1, a(2)=1, a(3)=-2}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jul 21 2019
MATHEMATICA
CoefficientList[Series[(1-x-x^2-Sqrt[1-2x-5x^2+10x^3+x^4])/(2x^2), {x, 0, 40}], x] (* Harvey P. Dale, Jan 28 2015 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x-x^2-sqrt(1-2*x-5*x^2+10*x^3+x^4))/(2*x^2)) \\ G. C. Greubel, Sep 22 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2-Sqrt(1-2*x-5*x^2+10*x^3+x^4))/(2*x^2))); // G. C. Greubel, Sep 22 2018
CROSSREFS
Cf. A174400.
Sequence in context: A111419 A360087 A306768 * A056881 A260322 A286540
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 18 2010
EXTENSIONS
Corrected and extended by T. D. Noe, Apr 26 2010
STATUS
approved