login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174882
A (3/2,-1) Somos-4 sequence.
6
1, 1, -2, -8, -16, -16, 32, 128, 256, 256, -512, -2048, -4096, -4096, 8192, 32768, 65536, 65536, -131072, -524288, -1048576, -1048576, 2097152, 8388608, 16777216, 16777216, -33554432, -134217728, -268435456, -268435456
OFFSET
0,3
COMMENTS
Hankel transform of A051286. a(n+2) = -(-1)^floor(n/4) * 2^A098181(n).
FORMULA
a(n) = ((3/2)*a(n-1)*a(n-3) - a(n-2)^2)/a(n-4), n>3.
a(-n) = a(n-1) / 2^(2*n - 1) for all n in Z. - Michael Somos, Jan 06 2011
0 = a(n)*(+2*a(n+4)) + a(n+1)*(-3*a(n+3)) + a(n+2)*(+2*a(n+2)) for all n in Z. - Michael Somos, Sep 18 2014
a(n+4) = -16 * a(n) for all n in Z. - Michael Somos, Sep 02 2015
G.f.: -(2*x-1)*(4*x^2+3*x+1)/(1+16*x^4) . - R. J. Mathar, Aug 18 2017
EXAMPLE
G.f. = 1 + x - 2*x^2 - 8*x^3 - 16*x^4 - 16*x^5 + 32*x^6 + 128*x^7 + ...
MATHEMATICA
a[ n_] := (-1)^Quotient[n + 2, 4] 2^(n - Mod[ Quotient[n + 1, 2], 2]); (* Michael Somos, Sep 18 2014 *)
CoefficientList[Series[(1-2*x)*(4*x^2+3*x+1)/(1+16*x^4), {x, 0, 50}], x] (* G. C. Greubel, Feb 21 2018 *)
PROG
(PARI) {a(n) = (-1)^((n+2) \ 4) * 2^(n - ((n+1) \ 2 % 2))}; /* Michael Somos, Jan 06 2011 */
(PARI) x='x+O('x^30); Vec((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4)) \\ G. C. Greubel, Feb 21 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4))) // G. C. Greubel, Feb 21 2018
CROSSREFS
Sequence in context: A110004 A182039 A359228 * A080095 A193219 A213249
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 31 2010
STATUS
approved