The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178418 A (-1, 2) Somos-4 sequence associated to the elliptic curve y^2 + 2*x*y + y = x^3 + x^2 + x. 1
 1, 1, 2, 9, -1, 164, -737, 5895, -119558, -113489, -39697759, -800750664, -25602199327, -2344309254991, 14264330936074, -14182654502256615, 1282764246790221919, -163799892405003723284, 67851128001519788451263 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Hankel transform of the sequence with g.f. 1/(1-x^2/(1-2x^2/(1-(9/4)x^2/(1+(2/81)x^2/(1-1476x^2/(1-.... where 0/1, 2/1, 9/4, -2/81, 1476/1,... are the x-coordinates of the multiples of (0, 0). LINKS G. C. Greubel, Table of n, a(n) for n = 1..125 (offset adapted by Georg Fischer, Jan 31 2019) FORMULA a(n) = (-a(n-1)*a(n-3) + 2*a(n-2)^2)/a(n-4), n>4. a(n) = -(-1)^n * a(-n), a(n+3)*a(n-2) = -a(n+2)*a(n-1) + 9*a(n+1)*a(n) for all n in Z. - Michael Somos, Sep 19 2018 EXAMPLE G.f. = x + x^2 + 2*x^3 + 9*x^4 - x^5 + 164*x^6 - 737*x^7 + ... - Michael Somos, Sep 19 2018 MATHEMATICA RecurrenceTable[{a[1]==a[2]==1, a[3]==2, a[4]==9, a[n]==(-a[n-1]a[n-3]+ 2a[n-2]^2)/a[n-4]}, a[n], {n, 20}] (* Harvey P. Dale, Sep 20 2011 *) PROG (PARI) m=30; v=concat([1, 1, 2, 9], vector(m-4)); for(n=5, m, v[n] = ( -v[n-1]*v[n-3] + 2*v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018 (MAGMA) I:=[1, 1, 2, 9]; [n le 4 select I[n] else (-Self(n-1)*Self(n-3) + 2*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018 CROSSREFS Sequence in context: A095178 A289632 A269919 * A249270 A153739 A298589 Adjacent sequences:  A178415 A178416 A178417 * A178419 A178420 A178421 KEYWORD easy,sign AUTHOR Paul Barry, May 27 2010 EXTENSIONS Offset changed to 1 by Michael Somos, Sep 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 15:01 EST 2020. Contains 338925 sequences. (Running on oeis4.)