The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178416 Primes p such that q*p+-Mod(p,q) are primes, for q=8. 1
 107, 163, 443, 467, 1307, 3163, 3467, 3907, 4283, 5507, 5563, 5923, 6067, 6323, 6427, 8147, 8563, 11083, 11587, 12347, 12763, 14747, 16987, 18443, 18947, 19963, 23227, 24043, 24107, 25867, 26227, 26683, 26987, 27827, 28867, 30347, 31123, 31907, 32843, 33427, 33563 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Each term yields a pair of sexy primes, i.e., {3541, 3547}, {3733, 3739}, etc. - K. D. Bajpai, Oct 05 2020 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..10000 EXAMPLE 8*107=856 and 856 +/-3 are primes. From K. D. Bajpai, Oct 05 2020: (Start) 443 is a term because 443 is prime: 8*443 + Mod (443, 8) = 3547 and 8*443 - Mod (443, 8) = 3541 are also prime. 467 is a term because 467 is prime: 8*467 + Mod (467, 8) = 3739 and 8*467 - Mod (467, 8) = 3733 are also prime. (End) MAPLE q:=8: select(p->isprime(p) and isprime(q*p + modp(p, q)) and isprime(q*p - modp(p, q)), [\$1..8!]); # K. D. Bajpai, Oct 05 2020 MATHEMATICA q=8; lst={}; Do[p=Prime[n]; If[PrimeQ[q*p-Mod[p, q]]&&PrimeQ[q*p+Mod[p, q]], AppendTo[lst, p]], {n, 8!}]; lst q=8; Select[Prime[Range[5000]], AllTrue[q*# + {Mod[#, q], - Mod[#, q]}, PrimeQ] &] (* K. D. Bajpai, Oct 05 2020 *) PROG (PARI) q=8; forprime(p=1, 5e4, if(isprime(q*p +(p%q)) && isprime(q*p - (p%q)) , print1(p, ", "))) \\ K. D. Bajpai, Oct 05 2020 (MAGMA) [p: p in PrimesUpTo(50000) | IsPrime(q*p - p mod q) and IsPrime(q*p + p mod q) where q is 8]; // K. D. Bajpai, Oct 05 2020 CROSSREFS Cf. A000040, A178383, A178385, A178386, A178387. Sequence in context: A251145 A168475 A142662 * A182477 A229570 A107215 Adjacent sequences:  A178413 A178414 A178415 * A178417 A178418 A178419 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, May 27 2010 EXTENSIONS a(39)-a(41) from K. D. Bajpai, Oct 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:42 EST 2020. Contains 338858 sequences. (Running on oeis4.)