OFFSET
1,2
COMMENTS
Every odd number occurs uniquely in this array. See A178414.
LINKS
T. D. Noe, T(n,k) for n = 1..50, by antidiagonals
Eric Weisstein's World of Mathematics, Collatz Problem
Wikipedia, Collatz conjecture
FORMULA
From Bob Selcoe, Apr 09 2015 (Start):
T(n,k) = 4*T(n,k-1) + 1.
T(n,k) = T(1,k) + 2^(2k+1)*(n-1)/2 when n is odd;
T(n,k) = T(2,k) + 4^k*(n-2)/2 when n >= 2 and n is even. So equivalently:
T(n,k) = T(n-2,k) + 2^(2k+1) when n is odd; and
T(n,k) = T(n-2,k) + 4^k when n is even.
Let j be the n-th positive odd number coprime with 3. Then:
T(n,k) = (j*4^k - 1)/3 when j == 1 (mod 3); and
T(n,k) = (j*2^(2k-1) - 1)/3 when j == 2 (mod 3).
(End)
From Wolfdieter Lang, Sep 18 2021: (Start)
T(n, k) = ((3*n - 1)*4^k - 2)/6 if n is even, and ((3*n - 2)*4^k - 1)/3 if n is odd, for n >= 1 and k >= 1. Also for n = 0: -A007583(k-1), with A007583(-1) = 1/2, and for k = 0: A022998(n-1)/2, with A022998(-1) = -1.
O.g.f. for array T (with row n = 0 and column k = 0; z for rows and x for columns): G(z, x) = (1/(2*(1-x)*(1-4*x)*(1-z^2)^2)) * ((2*x-4)*z^3 + (3-5*x)*z^2 + 2*x*z + 3*x - 1). (End)
EXAMPLE
Array T begins:
. 1 5 21 85 341 1365 5461 21845 87381 349525
. 3 13 53 213 853 3413 13653 54613 218453 873813
. 9 37 149 597 2389 9557 38229 152917 611669 2446677
. 7 29 117 469 1877 7509 30037 120149 480597 1922389
. 17 69 277 1109 4437 17749 70997 283989 1135957 4543829
. 11 45 181 725 2901 11605 46421 185685 742741 2970965
. 25 101 405 1621 6485 25941 103765 415061 1660245 6640981
. 15 61 245 981 3925 15701 62805 251221 1004885 4019541
. 33 133 533 2133 8533 34133 136533 546133 2184533 8738133
. 19 77 309 1237 4949 19797 79189 316757 1267029 5068117
- L. Edson Jeffery, Mar 11 2015
From Bob Selcoe, Apr 09 2015 (Start):
n=5, j=13: T(5,3) = 277 = (13*4^3 - 1)/3;
n=6, j=17: T(6,4) = 725 = (17*2^7 - 1)/3.
(End)
MATHEMATICA
t[n_, 1] := t[n, 1] = If[OddQ[n], 4n-3, 2n-1]; t[n_, k_] := t[n, k] = 4*t[n, k-1]+1; Flatten[Table[t[n-i+1, i], {n, 20}, {i, n}]]
CROSSREFS
KEYWORD
AUTHOR
T. D. Noe, May 28 2010
STATUS
approved