OFFSET
0,1
COMMENTS
Except a(0)=2, this is the 3rd row of table A178415. - Michel Marcus, Apr 13 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Mike Warburton, Ulam-Warburton Automaton - Counting Cells with Quadratics, arXiv:1901.10565 [math.CO], 2019. See Table 1.
Index entries for linear recurrences with constant coefficients, signature (5,-4).
FORMULA
G.f.: (2-x)/(1-5*x+4*x^2). - Bruno Berselli, Feb 12 2012
a(n) = A083597(n)+1. - Bruno Berselli, Feb 12 2012
a(n) = 4*a(n-1)+1 for n>0, a(0)=2. - Bruno Berselli, Oct 22 2015
a(n) = 7*A002450(n) + 2. - Yosu Yurramendi, Jan 24 2017
A006666(a(n)) = 2*n+11 for n > 0. - Juan Miguel Barga Pérez, Jun 18 2020
a(n) = 5*a(n-1) - 4*a(n-2) for n >= 2. - Wesley Ivan Hurt, Jun 30 2020
MATHEMATICA
Table[(7(4^n) - 1)/3, {n, 0, 24}] (* Alonso del Arte, Feb 11 2012 *)
CoefficientList[Series[(2-x)/(1-5*x+4*x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{5, -4}, {2, 9}, 30] (* Vincenzo Librandi, Mar 20 2012 *)
PROG
(Magma) [(7*4^n-1)/3 : n in [0..30]];
(PARI) vector(20, n, (7*4^(n-1)-1)/3) \\ Derek Orr, Apr 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Brad Clardy, Feb 07 2012
STATUS
approved