Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #62 Sep 08 2022 08:46:01
%S 2,9,37,149,597,2389,9557,38229,152917,611669,2446677,9786709,
%T 39146837,156587349,626349397,2505397589,10021590357,40086361429,
%U 160345445717,641381782869,2565527131477,10262108525909,41048434103637,164193736414549,656774945658197
%N a(n) = (7*4^n - 1)/3.
%C First bisection of A062092 and A081253, second bisection of A097163. - _Bruno Berselli_, Feb 12 2012
%C Except a(0)=2, this is the 3rd row of table A178415. - _Michel Marcus_, Apr 13 2015
%H Vincenzo Librandi, <a href="/A206374/b206374.txt">Table of n, a(n) for n = 0..1000</a>
%H Mike Warburton, <a href="https://arxiv.org/abs/1901.10565">Ulam-Warburton Automaton - Counting Cells with Quadratics</a>, arXiv:1901.10565 [math.CO], 2019. See Table 1.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).
%F G.f.: (2-x)/(1-5*x+4*x^2). - _Bruno Berselli_, Feb 12 2012
%F a(n) = A083597(n)+1. - _Bruno Berselli_, Feb 12 2012
%F a(n) = 4*a(n-1)+1 for n>0, a(0)=2. - _Bruno Berselli_, Oct 22 2015
%F a(n) = 7*A002450(n) + 2. - _Yosu Yurramendi_, Jan 24 2017
%F A006666(a(n)) = 2*n+11 for n > 0. - _Juan Miguel Barga Pérez_, Jun 18 2020
%F a(n) = 5*a(n-1) - 4*a(n-2) for n >= 2. - _Wesley Ivan Hurt_, Jun 30 2020
%F a(n) = A178415(3, n) = A347834(4, n-1), arrays, for n >= 1.- _Wolfdieter Lang_, Nov 29 2021
%t Table[(7(4^n) - 1)/3, {n, 0, 24}] (* _Alonso del Arte_, Feb 11 2012 *)
%t CoefficientList[Series[(2-x)/(1-5*x+4*x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-4},{2,9},30] (* _Vincenzo Librandi_, Mar 20 2012 *)
%o (Magma) [(7*4^n-1)/3 : n in [0..30]];
%o (PARI) vector(20,n,(7*4^(n-1)-1)/3) \\ _Derek Orr_, Apr 12 2015
%Y Cf. A002450, A006666, A072197; A002042 (first differences), A178415, A347834.
%K nonn,easy
%O 0,1
%A _Brad Clardy_, Feb 07 2012