login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062092 a(n) = 2*a(n-1) - (-1)^n for n > 0, a(0)=2. 13
2, 5, 9, 19, 37, 75, 149, 299, 597, 1195, 2389, 4779, 9557, 19115, 38229, 76459, 152917, 305835, 611669, 1223339, 2446677, 4893355, 9786709, 19573419, 39146837, 78293675, 156587349, 313174699, 626349397, 1252698795, 2505397589 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i] = 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,3). - Milan Janjic, Jan 24 2010
REFERENCES
T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.
LINKS
Petro Kosobutskyy and Dariia Rebot, Collatz conjecture 3n+/-1 as a Newton binomial problem, Comp. Des. Sys. Theor. Prac., Lviv Nat'l Polytech. Univ. (Ukraine 2023) Vol. 5, No. 1, 137-145. See p. 140.
FORMULA
a(n) = a(n-1) + 2*a(n-2).
a(n) = (7*2^n - (-1)^n)/3.
a(n) = 2^(n+1) + A001045(n).
A002487(a(n)) = A000032(n+1).
G.f.: (2+3*x)/(1-x-2*x^2).
E.g.f.: (7*exp(2*x) - exp(-x))/3.
a(n) = Sum_{j=0..2} A001045(n-j) (sum of 3 consecutive elements of the Jacobsthal sequence). - Alexander Adamchuk, May 16 2006
From Paul Curtz, Jun 03 2022: (Start)
a(n) = A001045(n+3) - A078008(n).
a(n) = A078008(n+3) - A001045(n).
a(n) = A005009(n-1) - a(n-1) for n >= 1.
a(n) = a(n-2) + A005009(n-2) for n >= 2.
a(n) = A154879(n-2) + 3*A201630(n-2) for n >= 2. (End)
MATHEMATICA
LinearRecurrence[{1, 2}, {2, 5}, 40] (* Jean-François Alcover, Aug 02 2021 *)
PROG
(PARI) a(n) = (7*2^n - (-1)^n)/3; \\ Harry J. Smith, Aug 01 2009
(Magma) [(7*2^n-(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Apr 04 2023
(SageMath) [(7*2^n-(-1)^n)/3 for n in range(41)] # G. C. Greubel, Apr 04 2023
CROSSREFS
Cf. A171160 (first differences).
Sequence in context: A122893 A178841 A214319 * A320172 A350243 A079117
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 16 2001
EXTENSIONS
More terms from Jason Earls, Jun 18 2001
Additional comments from Michael Somos, Jun 24 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 23:13 EDT 2024. Contains 374257 sequences. (Running on oeis4.)