The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062092 a(n) = 2*a(n-1) - (-1)^n for n > 0, a(0)=2. 13
 2, 5, 9, 19, 37, 75, 149, 299, 597, 1195, 2389, 4779, 9557, 19115, 38229, 76459, 152917, 305835, 611669, 1223339, 2446677, 4893355, 9786709, 19573419, 39146837, 78293675, 156587349, 313174699, 626349397, 1252698795, 2505397589 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i] = 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,3). - Milan Janjic, Jan 24 2010 REFERENCES T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98. LINKS Harry J. Smith, Table of n, a(n) for n = 0..200 Petro Kosobutskyy, The Collatz problem as a reverse n->0 problem on a graph tree formed from theta*2^n Jacobsthal-type numbers, arXiv:2306.14635 [math.GM], 2023. Petro Kosobutskyy and Dariia Rebot, Collatz conjecture 3n+/-1 as a Newton binomial problem, Comp. Des. Sys. Theor. Prac., Lviv Nat'l Polytech. Univ. (Ukraine 2023) Vol. 5, No. 1, 137-145. See p. 140. Index entries for linear recurrences with constant coefficients, signature (1,2). FORMULA a(n) = a(n-1) + 2*a(n-2). a(n) = (7*2^n - (-1)^n)/3. a(n) = 2^(n+1) + A001045(n). A002487(a(n)) = A000032(n+1). G.f.: (2+3*x)/(1-x-2*x^2). E.g.f.: (7*exp(2*x) - exp(-x))/3. a(n) = Sum_{j=0..2} A001045(n-j) (sum of 3 consecutive elements of the Jacobsthal sequence). - Alexander Adamchuk, May 16 2006 From Paul Curtz, Jun 03 2022: (Start) a(n) = A001045(n+3) - A078008(n). a(n) = A078008(n+3) - A001045(n). a(n) = A005009(n-1) - a(n-1) for n >= 1. a(n) = a(n-2) + A005009(n-2) for n >= 2. a(n) = A154879(n-2) + 3*A201630(n-2) for n >= 2. (End) MATHEMATICA LinearRecurrence[{1, 2}, {2, 5}, 40] (* Jean-François Alcover, Aug 02 2021 *) PROG (PARI) a(n) = (7*2^n - (-1)^n)/3; \\ Harry J. Smith, Aug 01 2009 (Magma) [(7*2^n-(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Apr 04 2023 (SageMath) [(7*2^n-(-1)^n)/3 for n in range(41)] # G. C. Greubel, Apr 04 2023 CROSSREFS Cf. A000032, A001045, A002487, A005009, A078008, A154879, A201630. Cf. A171160 (first differences). Sequence in context: A122893 A178841 A214319 * A320172 A350243 A079117 Adjacent sequences: A062089 A062090 A062091 * A062093 A062094 A062095 KEYWORD nonn,easy AUTHOR Amarnath Murthy, Jun 16 2001 EXTENSIONS More terms from Jason Earls, Jun 18 2001 Additional comments from Michael Somos, Jun 24 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 23:13 EDT 2024. Contains 374257 sequences. (Running on oeis4.)