OFFSET
0,1
COMMENTS
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i] = 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,3). - Milan Janjic, Jan 24 2010
REFERENCES
T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..200
Petro Kosobutskyy, The Collatz problem as a reverse n->0 problem on a graph tree formed from theta*2^n Jacobsthal-type numbers, arXiv:2306.14635 [math.GM], 2023.
Petro Kosobutskyy and Dariia Rebot, Collatz conjecture 3n+/-1 as a Newton binomial problem, Comp. Des. Sys. Theor. Prac., Lviv Nat'l Polytech. Univ. (Ukraine 2023) Vol. 5, No. 1, 137-145. See p. 140.
Index entries for linear recurrences with constant coefficients, signature (1,2).
FORMULA
a(n) = a(n-1) + 2*a(n-2).
a(n) = (7*2^n - (-1)^n)/3.
a(n) = 2^(n+1) + A001045(n).
G.f.: (2+3*x)/(1-x-2*x^2).
E.g.f.: (7*exp(2*x) - exp(-x))/3.
a(n) = Sum_{j=0..2} A001045(n-j) (sum of 3 consecutive elements of the Jacobsthal sequence). - Alexander Adamchuk, May 16 2006
From Paul Curtz, Jun 03 2022: (Start)
a(n) = A005009(n-1) - a(n-1) for n >= 1.
a(n) = a(n-2) + A005009(n-2) for n >= 2.
MATHEMATICA
LinearRecurrence[{1, 2}, {2, 5}, 40] (* Jean-François Alcover, Aug 02 2021 *)
PROG
(PARI) a(n) = (7*2^n - (-1)^n)/3; \\ Harry J. Smith, Aug 01 2009
(Magma) [(7*2^n-(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Apr 04 2023
(SageMath) [(7*2^n-(-1)^n)/3 for n in range(41)] # G. C. Greubel, Apr 04 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 16 2001
EXTENSIONS
More terms from Jason Earls, Jun 18 2001
Additional comments from Michael Somos, Jun 24 2002
STATUS
approved