login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083597
a(n) = (7*4^n - 4)/3.
7
1, 8, 36, 148, 596, 2388, 9556, 38228, 152916, 611668, 2446676, 9786708, 39146836, 156587348, 626349396, 2505397588, 10021590356, 40086361428, 160345445716, 641381782868, 2565527131476, 10262108525908, 41048434103636
OFFSET
0,2
COMMENTS
Binomial transform of A082541.
FORMULA
a(n) = (7*4^n-4)/3.
G.f.: (1+3*x)/((1-4*x)*(1-x)).
E.g.f.: (7*exp(4*x)-4*exp(x))/3.
a(n) = 4*a(n-1) + 4, n > 0. - Gary Detlefs, Jun 23 2010
a(0)=1, a(1)=8, a(n) = 5*a(n-1) - 4*a(n-2). - Harvey P. Dale, Jul 23 2011
a(n) = A020988(n) + A020989(n), n >= 0. - Yosu Yurramendi, Mar 03 2017
MATHEMATICA
(7*4^Range[0, 25]-4)/3 (* or *) LinearRecurrence[{5, -4}, {1, 8}, 26] (* Harvey P. Dale, Jul 23 2011 *)
CoefficientList[Series[(1 + 3 x)/((1 - 4 x) (1 - x)), {x, 0, 22}], x] (* Michael De Vlieger, Mar 03 2017 *)
PROG
(Magma) [(7*4^n-4)/3: n in [0..25]]; // Vincenzo Librandi, Jul 24 2011
(PARI) a(n)=(7*4^n-4)/3 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A024208 A000427 A000428 * A178744 A200707 A344207
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 02 2003
STATUS
approved