The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020988 a(n) = (2/3)*(4^n-1). 62
 0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Numbers whose binary representation is 10, n times (see A163662(n) for n >= 1). - Alexandre Wajnberg, May 31 2005 Numbers whose base-4 representation consists entirely of 2's; twice base-4 repunits. - Franklin T. Adams-Watters, Mar 29 2006 Expected time to finish a random Tower of Hanoi problem with 2n disks using optimal moves, so (since 2n is even and A010684(2n) = 1) a(n) = A060590(2n). - Henry Bottomley, Apr 05 2001 a(n) is the number of derangements of [2n + 3] with runs consisting of consecutive integers. E.g., a(1) = 10 because the derangements of {1, 2, 3, 4, 5} with runs consisting of consecutive integers are 5|1234, 45|123, 345|12, 2345|1, 5|4|123, 5|34|12, 45|23|1, 345|2|1, 5|4|23|1, 5|34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003 For n > 0, also smallest numbers having in binary representation exactly n + 1 maximal groups of consecutive zeros: A087120(n) = a(n-1), see A087116. - Reinhard Zumkeller, Aug 14 2003 Number of walks of length 2n + 3 between any two diametrically opposite vertices of the cycle graph C_6. Example: a(0) = 2 because in the cycle ABCDEF we have two walks of length 3 between A and D: ABCD and AFED. - Emeric Deutsch, Apr 01 2004 From Paul Barry, May 18 2003: (Start) Row sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (start with zeros for completeness):             0  0             1  1          1  4  4  1       1  6 14 14  6  1    1  8 27 49 49 27  8  1 (End) a(n) gives the position of the n-th zero in A173732, i.e., A173732(a(n)) = 0 for all n and this gives all the zeros in A173732. - Howard A. Landman, Mar 14 2010 Smallest number having alternating bit sum -n. Cf. A065359. For n = 0, 1, ..., the last digit of a(n) is 0, 2, 0, 2, ... . - Washington Bomfim, Jan 22 2011 Number of toothpicks minus 1 in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Mar 15 2012 For n > 0 also partial sums of the odd powers of 2 (A004171). - K. G. Stier, Nov 04 2013 Values of m such that binomial(4*m + 2, m) is odd. Cf. A002450. - Peter Bala, Oct 06 2015 For a(n) > 2, values of m such that m is two steps away from a power of 2 under the Collatz iteration. - Roderick MacPhee, Nov 10 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..170 from Vincenzo Librandi) Andrei Asinowski, Cyril Banderier, Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Zürich, Switzerland, 2019). Andrei Asinowski, Cyril Banderier, Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020. John Brillhart and Peter Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869. Nobushige Kurokawa, Zeta functions over F_1, Proc. Japan Acad., 81, Ser. A (2005), 180-184. See Theorem 3 (3). Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. See p.3. Index entries for linear recurrences with constant coefficients, signature (5,-4). FORMULA a(n) = 4*a(n-1) + 2, a(0) = 0. a(n) = A026644(2*n). a(n) = A007583(n) - 1 = A039301(n+1) - 2 = A083584(n-1) + 1. E.g.f. : (2/3)*(exp(4*x)-exp(x)). - Paul Barry, May 18 2003 a(n) = A007583(n+1) - 1 = A039301(n+2) - 2 = A083584(n) + 1. - Ralf Stephan, Jun 14 2003 G.f.: 2*x/((1-x)*(1-4*x)). - R. J. Mathar, Sep 17 2008 a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011 a(n) = A193652(2*n). - Reinhard Zumkeller, Aug 08 2011 a(n) = 5*a(n-1) - 4*a(n-2) (n > 1), a(0) = 0, a(1) = 2. - L. Edson Jeffery, Mar 02 2012 a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012 a(n) = 2*A002450(n). - Yosu Yurramendi, Jan 24 2017 From Seiichi Manyama, Nov 24 2017: (Start) Zeta_{GL(2)/F_1}(s) = Product_{k = 1..4} (s-k)^(-b(2,k)), where Sum b(2,k)*t^k = t*(t-1)*(t^2-1). That is Zeta_{GL(2)/F_1}(s) = (s-3)*(s-2)/((s-4)*(s-1)). Zeta_{GL(2)/F_1}(s) = Product_{n > 0} (1 - (1/s)^n)^(-A295521(n)) = Product_{n > 0} (1 - x^n)^(-A295521(n)) = (1-3*x)*(1-2*x)/((1-4*x)*(1-x)) = 1 + Sum_{k > 0} a(k-1)*x^k (x=1/s). (End) From Oboifeng Dira, May 29 2020: (Start) a(n) = A078008(2n+1) (second bisection). a(n) = Sum_{k=0..n} binomial(2n+1,mod(n+2,3)+3k). (End) MAPLE A020988 := proc(n)     2*(4^n-1)/3 ; end proc: # R. J. Mathar, Feb 19 2015 MATHEMATICA (2(4^Range[0, 30] - 1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *) PROG (MAGMA) [(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011 (PARI) vector(100, n, n--; (2/3)*(4^n-1)) \\ Altug Alkan, Oct 06 2015 (PARI) Vec(2*z/((1-z)*(1-4*z)) + O(z^30)) \\ Altug Alkan, Oct 11 2015 (Scala) (((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).map(2 * _)).scanLeft(0: BigInt)(_ + _) // Alonso del Arte, Sep 12 2019 CROSSREFS Cf. A020989, A108019, A295521. Sequence in context: A276666 A302524 A084180 * A177238 A084480 A309182 Adjacent sequences:  A020985 A020986 A020987 * A020989 A020990 A020991 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Sep 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 06:05 EDT 2020. Contains 338011 sequences. (Running on oeis4.)