OFFSET
0,2
COMMENTS
Numbers whose binary representation is 10, n times (see A163662(n) for n >= 1). - Alexandre Wajnberg, May 31 2005
Numbers whose base-4 representation consists entirely of 2's; twice base-4 repunits. - Franklin T. Adams-Watters, Mar 29 2006
Expected time to finish a random Tower of Hanoi problem with 2n disks using optimal moves, so (since 2n is even and A010684(2n) = 1) a(n) = A060590(2n). - Henry Bottomley, Apr 05 2001
a(n) is the number of derangements of [2n + 3] with runs consisting of consecutive integers. E.g., a(1) = 10 because the derangements of {1, 2, 3, 4, 5} with runs consisting of consecutive integers are 5|1234, 45|123, 345|12, 2345|1, 5|4|123, 5|34|12, 45|23|1, 345|2|1, 5|4|23|1, 5|34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003
For n > 0, also smallest numbers having in binary representation exactly n + 1 maximal groups of consecutive zeros: A087120(n) = a(n-1), see A087116. - Reinhard Zumkeller, Aug 14 2003
Number of walks of length 2n + 3 between any two diametrically opposite vertices of the cycle graph C_6. Example: a(0) = 2 because in the cycle ABCDEF we have two walks of length 3 between A and D: ABCD and AFED. - Emeric Deutsch, Apr 01 2004
From Paul Barry, May 18 2003: (Start)
Row sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (start with zeros for completeness):
0 0
1 1
1 4 4 1
1 6 14 14 6 1
1 8 27 49 49 27 8 1 (End)
a(n) gives the position of the n-th zero in A173732, i.e., A173732(a(n)) = 0 for all n and this gives all the zeros in A173732. - Howard A. Landman, Mar 14 2010
Smallest number having alternating bit sum -n. Cf. A065359. For n = 0, 1, ..., the last digit of a(n) is 0, 2, 0, 2, ... . - Washington Bomfim, Jan 22 2011
Number of toothpicks minus 1 in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Mar 15 2012
For n > 0 also partial sums of the odd powers of 2 (A004171). - K. G. Stier, Nov 04 2013
Values of m such that binomial(4*m + 2, m) is odd. Cf. A002450. - Peter Bala, Oct 06 2015
For a(n) > 2, values of m such that m is two steps away from a power of 2 under the Collatz iteration. - Roderick MacPhee, Nov 10 2016
a(n) is the position of the first occurrence of 2^(n+1)-1 in A020986. See the Brillhart and Morton link, pp. 856-857. - John Keith, Jan 12 2021
a(n) is the number of monotone paths in the n-dimensional cross-polytope for a generic linear orientation. See the Black and De Loera link. - Alexander E. Black, Feb 15 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..170 from Vincenzo Librandi)
Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Zürich, Switzerland, 2019) [link is not very stable].
Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.
Alexander E. Black, Monotone Paths on Polytopes: Combinatorics and Optimization, Ph. D. Dissertation, Univ. Calif. Davis (2024). See p. 59.
Alexander Black and Jesús De Loera, Monotone paths on cross-polytopes, arXiv:2102.01237 [math.CO], Feb 2021
John Brillhart and Peter Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
Nobushige Kurokawa, Zeta functions over F_1, Proc. Japan Acad., 81, Ser. A (2005), 180-184. See Theorem 3 (3).
Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. See p.3.
Index entries for linear recurrences with constant coefficients, signature (5,-4).
FORMULA
a(n) = 4*a(n-1) + 2, a(0) = 0.
a(n) = A026644(2*n).
E.g.f. : (2/3)*(exp(4*x)-exp(x)). - Paul Barry, May 18 2003
G.f.: 2*x/((1-x)*(1-4*x)). - R. J. Mathar, Sep 17 2008
a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011
a(n) = A193652(2*n). - Reinhard Zumkeller, Aug 08 2011
a(n) = 5*a(n-1) - 4*a(n-2) (n > 1), a(0) = 0, a(1) = 2. - L. Edson Jeffery, Mar 02 2012
a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012
a(n) = 2*A002450(n). - Yosu Yurramendi, Jan 24 2017
From Seiichi Manyama, Nov 24 2017: (Start)
Zeta_{GL(2)/F_1}(s) = Product_{k = 1..4} (s-k)^(-b(2,k)), where Sum b(2,k)*t^k = t*(t-1)*(t^2-1). That is Zeta_{GL(2)/F_1}(s) = (s-3)*(s-2)/((s-4)*(s-1)).
Zeta_{GL(2)/F_1}(s) = Product_{n > 0} (1 - (1/s)^n)^(-A295521(n)) = Product_{n > 0} (1 - x^n)^(-A295521(n)) = (1-3*x)*(1-2*x)/((1-4*x)*(1-x)) = 1 + Sum_{k > 0} a(k-1)*x^k (x=1/s). (End)
From Oboifeng Dira, May 29 2020: (Start)
a(n) = A078008(2n+1) (second bisection).
a(n) = Sum_{k=0..n} binomial(2n+1, ((n+2) mod 3)+3k). (End)
MAPLE
MATHEMATICA
(2(4^Range[0, 30] - 1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *)
PROG
(Magma) [(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) vector(100, n, n--; (2/3)*(4^n-1)) \\ Altug Alkan, Oct 06 2015
(PARI) Vec(2*z/((1-z)*(1-4*z)) + O(z^30)) \\ Altug Alkan, Oct 11 2015
(Scala) (((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).map(2 * _)).scanLeft(0: BigInt)(_ + _) // Alonso del Arte, Sep 12 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Sep 06 2006
STATUS
approved