OFFSET
1,1
COMMENTS
The digits are n concatenated blocks of (10).
Smallest number having alternating bit sum -n. Cf. A065359. - Washington Bomfim, Jan 22 2011
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..495
Index entries for linear recurrences with constant coefficients, signature (101, -100).
FORMULA
a(n) = Sum_{k=1..n} 10^(2k-1).
From R. J. Mathar, Jul 08 2009: (Start)
a(n) = 100*a(n-1) + 10.
a(n) = 101*a(n-1) - 100*a(n-2).
G.f.: 10*x/((100*x-1)*(x-1)). (End)
From G. C. Greubel, Aug 01 2017: (Start)
a(n) = (10/99)*(10^(2*n) - 1).
E.g.f.: (10/99)*(exp(100*x) - exp(x)). (End)
MAPLE
A163662 := proc(n) add(10^(2*k-1), k=1..n) ; end: seq(A163662(n), n=1..30) ; # R. J. Mathar, Jul 08 2009
MATHEMATICA
Table[(10/99)*(10^(2*n) - 1), {n, 1, 50}] (* G. C. Greubel, Aug 01 2017 *)
Table[FromDigits[PadRight[{}, 2n, {1, 0}]], {n, 20}] (* or *) LinearRecurrence[ {101, -100}, {10, 1010}, 20] (* Harvey P. Dale, Jan 08 2020 *)
PROG
(PARI) x='x+O('x^50); Vec(10*x/((100*x-1)*(x-1))) \\ G. C. Greubel, Aug 01 2017
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Jaroslav Krizek, Aug 02 2009
STATUS
approved