OFFSET
0,6
COMMENTS
Notation: (2)[n](-1)
From David W. Wilson and Ralf Stephan, Jan 09 2007: (Start)
a(n) == 0 (mod 3) iff n == 0 (mod 3).
a(n) == 0 (mod 6) iff (n == 0 (mod 3) and n/3 not in A036556).
a(n) == 3 (mod 6) iff (n == 0 (mod 3) and n/3 in A036556). (End)
From Robert G. Wilson v, Feb 15 2011: (Start)
First occurrence of k and -k: 0, 1, 2, 5, 10, 21, 42, 85, ..., (A000975); i.e., first 0 occurs for 0, first 1 occurs for 1, first -1 occurs at 2, first 2 occurs for 5, etc.;
a(n)=-3 only if n mod 3 = 0,
a(n)=-2 only if n mod 3 = 1,
a(n)=-1 only if n mod 3 = 2,
a(n)= 0 only if n mod 3 = 0,
a(n)= 1 only if n mod 3 = 1,
a(n)= 2 only if n mod 3 = 2,
a(n)= 3 only if n mod 3 = 0, ..., . (End)
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 20 2011
In the Koch curve, number the segments starting with n=0 for the first segment. The net direction (i.e., the sum of the preceding turns) of segment n is a(n)*60 degrees. This is since in the curve each base-4 digit 0,1,2,3 of n is a sub-curve directed respectively 0, +60, -60, 0 degrees, which is the net 0,+1,-1,0 of two bits in the sum here. - Kevin Ryde, Jan 24 2020
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65535 (terms 0..1000 from Harry J. Smith)
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197. [Preprint.]
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
H.-K. Hwang, S. Janson and T.-H. Tsai. Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications. Preprint, 2016.
H.-K. Hwang, S. Janson and T.-H. Tsai. Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications. ACM Transactions on Algorithms, 13:4 (2017), #47. DOI:10.1145/3127585.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
Helge von Koch, Une Méthode Géométrique Élémentaire pour l'Étude de Certaines Questions de la Théorie des Courbes Planes, Acta Arithmetica, volume 30, 1906, pages 145-174.
William Paulsen, wpaulsen(AT)csm.astate.edu, Partitioning the [prime] maze
Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
Ralf Stephan, Some divide-and-conquer sequences ...
Ralf Stephan, Table of generating functions
FORMULA
G.f.: (1/(1-x)) * Sum_{k>=0} (-1)^k*x^2^k/(1+x^2^k). - Ralf Stephan, Mar 07 2003
a(0) = 0, a(2n) = -a(n), a(2n+1) = 1-a(n). - Ralf Stephan, Mar 07 2003
a(n) = Sum_{k>=0} A030308(n,k)*(-1)^k. - Philippe Deléham, Oct 20 2011
a(n) = -a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Mar 20 2015
G.f. A(x) satisfies: A(x) = x / (1 - x^2) - (1 + x) * A(x^2). - Ilya Gutkovskiy, Jul 28 2021
EXAMPLE
Alternating bit sum for 11 = 1011 in binary is 1 - 1 + 0 - 1 = -1, so a(11) = -1.
MAPLE
A065359 := proc(n) local dgs ; dgs := convert(n, base, 2) ; add( -op(i, dgs)*(-1)^i, i=1..nops(dgs)) ; end proc: # R. J. Mathar, Feb 04 2011
MATHEMATICA
f[0]=0; f[n_] := Plus @@ (-(-1)^Range[ Floor[ Log2@ n + 1]] Reverse@ IntegerDigits[n, 2]); Array[ f, 107, 0]
PROG
(PARI) a(n) = my(s=0, u=1); for(k=0, #binary(n)-1, s+=bittest(n, k)*u; u=-u); s /* Washington Bomfim, Jan 18 2011 */
(PARI) a(n) = my(b=binary(n)); b*[(-1)^k|k<-[-#b+1..0]]~; \\ Ruud H.G. van Tol, Oct 16 2023
(PARI) a(n) = if(n==0, 0, 2*hammingweight(bitand(n, ((4<<(2*logint(n, 4)))-1)/3)) - hammingweight(n)) \\ Andrew Howroyd, Dec 14 2024
(Haskell)
a065359 0 = 0
a065359 n = - a065359 n' + m where (n', m) = divMod n 2
-- Reinhard Zumkeller, Mar 20 2015
(Python)
def a(n):
return sum((-1)**k for k, bi in enumerate(bin(n)[2:][::-1]) if bi=='1')
print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 13 2021
(Python)
from sympy.ntheory import digits
def A065359(n): return sum((0, 1, -1, 0)[i] for i in digits(n, 4)[1:]) # Chai Wah Wu, Jul 19 2024
CROSSREFS
KEYWORD
base,easy,sign,changed
AUTHOR
Marc LeBrun, Oct 31 2001
EXTENSIONS
More terms from Ralf Stephan, Jul 12 2003
STATUS
approved