login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065368
Alternating sum of ternary digits in n. Replace 3^k with (-1)^k in ternary expansion of n.
13
0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, 3, 0, 1, 2, -1, 0, 1, 2, 3, 4, 1, 2, 3, 0, 1, 2, -1, 0, 1, -2, -1, 0, -3, -2, -1, 0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, 3, 0, 1, 2, -1, 0, 1, -2, -1, 0, -3, -2, -1, -4, -3, -2, -1, 0, 1, -2, -1, 0, -3, -2, -1, 0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, 3, 0, 1, 2, -1, 0, 1, 2, 3, 4, 1, 2, 3, 0, 1, 2, 3, 4, 5, 2, 3
OFFSET
0,3
COMMENTS
Notation: (3)[n](-1).
Fixed point of the morphism 0 -> 0,1,2; 1 -> -1,0,1; 2 -> -2,-1,0; ...; n -> -n,-n+1,-n+2. - Philippe Deléham, Oct 22 2011
FORMULA
a(n) = Sum_{k>=0} A030341(n,k)*(-1)^k. - Philippe Deléham, Oct 22 2011.
G.f. A(x) satisfies: A(x) = x * (1 + 2*x) / (1 - x^3) - (1 + x + x^2) * A(x^3). - Ilya Gutkovskiy, Jul 28 2021
EXAMPLE
15 = +1(9)+2(3)+0(1) -> +1(+1)+2(-1)+0(+1) = -1 = a(15).
PROG
(Python)
from sympy.ntheory.digits import digits
def a(n):
return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 3)[1:][::-1]))
print([a(n) for n in range(104)]) # Michael S. Branicky, Jul 28 2021
(Python)
from sympy.ntheory import digits
def A065368(n): return sum((0, 1, 2, -1, 0, 1, -2, -1, 0)[i] for i in digits(n, 9)[1:]) # Chai Wah Wu, Jul 19 2024
CROSSREFS
KEYWORD
base,easy,sign
AUTHOR
Marc LeBrun, Oct 31 2001
EXTENSIONS
Initial 0 added by Philippe Deléham, Oct 22 2011
STATUS
approved