login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065369
Replace 3^k with (-3)^k in ternary expansion of n.
13
0, 1, 2, -3, -2, -1, -6, -5, -4, 9, 10, 11, 6, 7, 8, 3, 4, 5, 18, 19, 20, 15, 16, 17, 12, 13, 14, -27, -26, -25, -30, -29, -28, -33, -32, -31, -18, -17, -16, -21, -20, -19, -24, -23, -22, -9, -8, -7, -12, -11, -10, -15, -14, -13, -54, -53, -52, -57, -56, -55, -60, -59, -58, -45, -44, -43, -48, -47, -46
OFFSET
0,3
COMMENTS
Base 3 representation for n (in lexicographic order) converted from base -3 to base 10.
Notation: (3)[n](-3)
Fixed point of the morphism 0-> 0,1,2 ; 1-> -3,-2,-1 ; 2-> -6,-5,-4 ; ...; n-> -3n,-3n+1,-3n+2. - Philippe Deléham, Oct 22 2011
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625 [math.CO], 2020-2021.
FORMULA
a(n) = Sum_{k>=0} A030341(n,k)*(-3)^k. - Philippe Deléham, Oct 22 2011
a(3*k+m) = -3*a(k)+m for 0 <= m < 3. - Chai Wah Wu, Jan 16 2020
EXAMPLE
15 = +1(9)+2(3)+0(1) -> +1(+9)+2(-3)+0(+1) = +3 = a(15)
MATHEMATICA
f[n_Integer, b_Integer] := Block[{l = IntegerDigits[n]}, Sum[l[[ -i]]*(-b)^(i - 1), {i, 1, Length[l]}]]; a = Table[ FromDigits[ IntegerDigits[n, 3]], {n, 0, 80}]; b = {}; Do[b = Append[b, f[a[[n]], 3]], {n, 1, 80}]; b
PROG
(PARI) a(n) = fromdigits(digits(n, 3), -3) \\ Rémy Sigrist, Feb 06 2020
KEYWORD
base,easy,look,sign
AUTHOR
Marc LeBrun, Oct 31 2001
STATUS
approved