OFFSET
2,3
COMMENTS
Conjecture: For any m >= 0 there is a k such that a(k) = m. Also for any reals x and epsilon such that 0 < x < 1 and epsilon > 0, there is a k such that abs(x - frac(prime(k)/pi(k))) < epsilon.
LINKS
MATHEMATICA
a[n_] := Floor[n*FractionalPart[Prime[n]/PrimePi[n]]]; Table[a[n], {n, 2, 2^6}]
PROG
(PARI) a(n) = floor(n*frac(prime(n)/primepi(n))); \\ Michel Marcus, Jul 21 2020
(PARI) first(n) = {my(t = 2, res = vector(n), pit = 0); forprime(p = 3, oo, if(isprime(t), pit++); res[t-1] = floor(t * frac(p/pit)); t++; if(t-1 > n, return(res)))} \\ David A. Corneth, Aug 22 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Jul 20 2020
STATUS
approved