OFFSET
1,2
COMMENTS
We have that Z_7*/(Z_7*)^n is the inverse limit of (Z/7^iZ)*/((Z/7^iZ)*)^n as i tends to infinity. Write n = 7^e * n' with n' not being divisible by 7, then the group is cyclic of order 7^e * gcd(7,n'). See A370050.
LINKS
Jianing Song, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(7^e) = 7^e, a(2^e) = 2, a(3^e) = 3 and a(p^e) = 1 for primes p != 2, 3, 7.
From Amiram Eldar, May 20 2024: (Start)
Dirichlet g.f.: (1 + 1/2^s) * (1 + 2/3^s) * ((1 - 1/7^s)/(1 - 1/7^(s-1))) * zeta(s).
Sum_{k=1..n} a(k) ~ (15*n/(7*log(7))) * (log(n) + gamma - 1 + 2*log(7)/3 - 2*log(3)/5 - log(2)/3), where gamma is Euler's constant (A001620). (End)
EXAMPLE
We have Z_7*/(Z_7*)^7 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (19+49Z_7) U (30+49Z_7) U (31+49Z_7) U (48+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (19+49Z) U (30+49Z) U (31+49Z) U (48+49Z)) = C_7, so a(7) = 7.
We have Z_7*/(Z_7*)^14 = Z_7* / ((1+49Z_7) U (18+49Z_7) U (30+49Z_7)) = (Z/49Z)*/((1+49Z) U (18+49Z) U (30+49Z)) = C_14, so a(14) = 14.
MATHEMATICA
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
PROG
(PARI) a(n, {p=7}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jianing Song, Apr 30 2024
STATUS
approved