login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167772
Riordan array (c(x)/(1+x*c(x)), x*c(x)), c(x) the g.f. of A000108.
4
1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 6, 8, 6, 3, 1, 18, 24, 18, 10, 4, 1, 57, 75, 57, 33, 15, 5, 1, 186, 243, 186, 111, 54, 21, 6, 1, 622, 808, 622, 379, 193, 82, 28, 7, 1, 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 7338, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1
OFFSET
0,7
LINKS
FORMULA
Sum_{k=0..n} T(n, k) = A000958(n+1).
From Philippe Deléham, Nov 12 2009: (Start)
Sum_{k=0..n} T(n,k)*2^k = A014300(n).
Sum_{k=0..n} T(n,k)*2^(n-k) = A064306(n). (End)
For n > 0: T(n,0) = A065602(n+1,3), T(n,k) = A065602(n+1,k+1), k = 1..n. - Reinhard Zumkeller, May 15 2014
EXAMPLE
Triangle begins:
1;
0, 1;
1, 1, 1;
2, 3, 2, 1;
6, 8, 6, 3, 1;
18, 24, 18, 10, 4, 1;
57, 75, 57, 33, 15, 5, 1;
186, 243, 186, 111, 54, 21, 6, 1;
622, 808, 622, 379, 193, 82, 28, 7, 1;
2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1;
Production matrix begins:
0, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
... - Philippe Deléham, Mar 03 2013
MATHEMATICA
A065602[n_, k_]:= A065602[n, k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n-j) -k-1), {j, 0, (n-k)/2}];
T[n_, k_]:= If[k==0, A065602[n+1, 3] + Boole[n==0], A065602[n+1, k+1]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 26 2022 *)
PROG
(Haskell)
import Data.List (genericIndex)
a167772 n k = genericIndex (a167772_row n) k
a167772_row n = genericIndex a167772_tabl n
a167772_tabl = [1] : [0, 1] :
map (\xs@(_:x:_) -> x : xs) (tail a065602_tabl)
-- Reinhard Zumkeller, May 15 2014
(SageMath)
def A065602(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
def A167772(n, k):
if (k==0): return A065602(n+1, 3) + bool(n==0)
else: return A065602(n+1, k+1)
flatten([[A167772(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2022
CROSSREFS
Sequence in context: A065369 A336404 A370182 * A077870 A294408 A358605
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 11 2009, corrected Nov 12 2009
STATUS
approved