OFFSET
0,7
LINKS
Reinhard Zumkeller, Rows n=0..125 of triangle, flattened
FORMULA
Sum_{k=0..n} T(n, k) = A000958(n+1).
From Philippe Deléham, Nov 12 2009: (Start)
Sum_{k=0..n} T(n,k)*2^k = A014300(n).
Sum_{k=0..n} T(n,k)*2^(n-k) = A064306(n). (End)
For n > 0: T(n,0) = A065602(n+1,3), T(n,k) = A065602(n+1,k+1), k = 1..n. - Reinhard Zumkeller, May 15 2014
EXAMPLE
Triangle begins:
1;
0, 1;
1, 1, 1;
2, 3, 2, 1;
6, 8, 6, 3, 1;
18, 24, 18, 10, 4, 1;
57, 75, 57, 33, 15, 5, 1;
186, 243, 186, 111, 54, 21, 6, 1;
622, 808, 622, 379, 193, 82, 28, 7, 1;
2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1;
Production matrix begins:
0, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
... - Philippe Deléham, Mar 03 2013
MATHEMATICA
A065602[n_, k_]:= A065602[n, k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n-j) -k-1), {j, 0, (n-k)/2}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 26 2022 *)
PROG
(Haskell)
import Data.List (genericIndex)
a167772 n k = genericIndex (a167772_row n) k
a167772_row n = genericIndex a167772_tabl n
a167772_tabl = [1] : [0, 1] :
map (\xs@(_:x:_) -> x : xs) (tail a065602_tabl)
-- Reinhard Zumkeller, May 15 2014
(SageMath)
def A065602(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
def A167772(n, k):
if (k==0): return A065602(n+1, 3) + bool(n==0)
else: return A065602(n+1, k+1)
flatten([[A167772(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 11 2009, corrected Nov 12 2009
STATUS
approved