login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104629
Expansion of (1-2*x-sqrt(1-4*x))/(x^2 * (1+2*x+sqrt(1-4*x))).
5
1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252
OFFSET
0,2
COMMENTS
Diagonal sums of A039598.
LINKS
FORMULA
a(n) = A000957(n+3).
a(n) = (1 + Sum_{k=0..n+2} C(k)*(-2)^k)/(8*(-2)^n), where C(n) = Catalan numbers.
D-finite with recurrence: 2*(n+3)*a(n) +(-7*n-9)*a(n-1) +2*(-2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 30 2014 [Verified by Georg Fischer, Apr 27 2023]
MATHEMATICA
CoefficientList[Series[((1-2x-Sqrt[1-4x])/(1+2x+Sqrt[1-4x]))/x^2, {x, 0, 30}], x] (* Harvey P. Dale, Jul 23 2016 *)
Table[(1 + Sum[CatalanNumber[n]*(-2)^k, {k, 0, n+2}])/(8*(-2)^n), {n, 0, 30}] (* G. C. Greubel, Aug 12 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(x^2*(1+2*x+sqrt(1-4*x)))) \\ G. C. Greubel, Aug 12 2018
(PARI) for(n=0, 30, print1((1 + sum(k=0, n+2, (-2)^k*binomial(2*k, k)/(k+1)))/(8*(-2)^n), ", ")) \\ G. C. Greubel, Aug 12 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-4*x))/(x^2*(1+2*x+Sqrt(1-4*x))))); // G. C. Greubel, Aug 12 2018
(Python)
from itertools import count, islice
def A104629_gen(): # generator of terms
a, c = 0, 1
for n in count(1):
yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
A104629_list = list(islice(A104629_gen(), 20)) # Chai Wah Wu, Apr 26 2023
CROSSREFS
Partial sums of A122920.
Sequence in context: A209797 A064310 A126983 * A000957 A307496 A339044
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 17 2005
STATUS
approved