This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104629 Expansion of (1-2*x-sqrt(1-4*x))/(x^2 * (1+2*x+sqrt(1-4*x))). 5
 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Diagonal sums of A039598. a(n)=A000957(n+3). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = (1 + Sum_{k=0..n+2} C(k)*(-2)^k)/(8*(-2)^n), where C(n) = Catalan numbers. Conjecture: 2*(n+3)*a(n) +(-7*n-9)*a(n-1) +2*(-2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 30 2014 MATHEMATICA CoefficientList[Series[((1-2x-Sqrt[1-4x])/(1+2x+Sqrt[1-4x]))/x^2, {x, 0, 30}], x] (* Harvey P. Dale, Jul 23 2016 *) Table[(1 + Sum[CatalanNumber[n]*(-2)^k, {k, 0, n+2}])/(8*(-2)^n), {n, 0, 30}] (* G. C. Greubel, Aug 12 2018 *) PROG (PARI) x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(x^2*(1+2*x+sqrt(1-4*x)))) \\ G. C. Greubel, Aug 12 2018 (PARI) for(n=0, 30, print1((1 + sum(k=0, n+2, (-2)^k*binomial(2*k, k)/(k+1)))/(8*(-2)^n), ", ")) \\ G. C. Greubel, Aug 12 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-4*x))/(x^2*(1+2*x+Sqrt(1-4*x))))); // G. C. Greubel, Aug 12 2018 CROSSREFS Cf. A064310. Sequence in context: A209797 A064310 A126983 * A000957 A307496 A125305 Adjacent sequences:  A104626 A104627 A104628 * A104630 A104631 A104632 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 18:24 EDT 2019. Contains 327116 sequences. (Running on oeis4.)