login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126983 Expansion of 1/(1+x*c(x)), c(x) the g.f. of Catalan numbers A000108. 9
1, -1, 0, -1, -2, -6, -18, -57, -186, -622, -2120, -7338, -25724, -91144, -325878, -1174281, -4260282, -15548694, -57048048, -210295326, -778483932, -2892818244, -10786724388, -40347919626, -151355847012, -569274150156 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Hankel transform is (-1)^n.

Catalan transform of A033999. - R. J. Mathar, Nov 11 2008

LINKS

Fung Lam, Table of n, a(n) for n = 0..1500

Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.

FORMULA

a(n) = (-1)^n*A064310(n).

a(n) = Sum_{k=0..n} A039599(n,k)*(-2)^k.

From Philippe Deléham, Nov 15 2009: (Start)

a(n) = Sum_{k=0..n} A106566(n,k)*(-1)^k, a(0)=1.

a(n) = -A000957(n) for n>0. (End)

Recurrence: 2*(n+2)*a(n+2) = (7*n+2)*a(n+1) + 2*(2*n+1)*a(n). - Fung Lam, May 07 2014

a(n) ~ -2^(2n)/sqrt(Pi*n^3)/9. - Fung Lam, May 07 2014

MATHEMATICA

Table[(-1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]), {n, 0, 30}] (* G. C. Greubel, Feb 27 2019 *)

PROG

(PARI) {a(n) = (-1/2)^n*(1+sum(k=0, n-1, (-2)^k*binomial(2*k, k)/(k+1)))};

vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 27 2019

(Magma) [1] cat [(-1/2)^n*(1 +(&+[(-2)^k*Binomial(2*k, k)/(k+1): k in [0..n-1]])): n in [1..30]]; // G. C. Greubel, Feb 27 2019

(Sage) [1] + [(-1/2)^n*(1 +sum((-2)^k*catalan_number(k) for k in (0..n-1))) for n in (1..30)] # G. C. Greubel, Feb 27 2019

CROSSREFS

Cf. A000108, A000957, A039599, A064310, A106566.

Sequence in context: A352076 A209797 A064310 * A104629 A000957 A307496

Adjacent sequences:  A126980 A126981 A126982 * A126984 A126985 A126986

KEYWORD

sign

AUTHOR

Philippe Deléham, Mar 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 03:35 EDT 2022. Contains 357082 sequences. (Running on oeis4.)