login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126983 Expansion of 1/(1+x*c(x)), c(x) the g.f. of Catalan numbers A000108. 9
1, -1, 0, -1, -2, -6, -18, -57, -186, -622, -2120, -7338, -25724, -91144, -325878, -1174281, -4260282, -15548694, -57048048, -210295326, -778483932, -2892818244, -10786724388, -40347919626, -151355847012, -569274150156 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Hankel transform is (-1)^n.
Catalan transform of A033999. - R. J. Mathar, Nov 11 2008
LINKS
Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
FORMULA
a(n) = (-1)^n*A064310(n).
a(n) = Sum_{k=0..n} A039599(n,k)*(-2)^k.
From Philippe Deléham, Nov 15 2009: (Start)
a(n) = Sum_{k=0..n} A106566(n,k)*(-1)^k, a(0)=1.
a(n) = -A000957(n) for n>0. (End)
Recurrence: 2*(n+2)*a(n+2) = (7*n+2)*a(n+1) + 2*(2*n+1)*a(n). - Fung Lam, May 07 2014
a(n) ~ -2^(2n)/sqrt(Pi*n^3)/9. - Fung Lam, May 07 2014
MATHEMATICA
Table[(-1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]), {n, 0, 30}] (* G. C. Greubel, Feb 27 2019 *)
PROG
(PARI) {a(n) = (-1/2)^n*(1+sum(k=0, n-1, (-2)^k*binomial(2*k, k)/(k+1)))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 27 2019
(Magma) [1] cat [(-1/2)^n*(1 +(&+[(-2)^k*Binomial(2*k, k)/(k+1): k in [0..n-1]])): n in [1..30]]; // G. C. Greubel, Feb 27 2019
(Sage) [1] + [(-1/2)^n*(1 +sum((-2)^k*catalan_number(k) for k in (0..n-1))) for n in (1..30)] # G. C. Greubel, Feb 27 2019
(Python)
from itertools import count, islice
def A126983_gen(): # generator of terms
yield from (1, -1, 0)
a, c = 0, 1
for n in count(1):
yield (a:=-a-(c:=c*((n<<2)+2)//(n+2))>>1)
A126983_list = list(islice(A126983_gen(), 20)) # Chai Wah Wu, Apr 27 2023
CROSSREFS
Sequence in context: A352076 A209797 A064310 * A104629 A000957 A307496
KEYWORD
sign
AUTHOR
Philippe Deléham, Mar 21 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 15:36 EST 2023. Contains 367693 sequences. (Running on oeis4.)