login
A126982
Expansion of 1/(1+3*x*c(x)), c(x) the g.f. of Catalan numbers A000108.
7
1, -3, 6, -15, 30, -78, 144, -423, 630, -2490, 1956, -16998, -5844, -142860, -235740, -1475415, -3951450, -17627490, -57571740, -228692610, -810889020, -3098590020, -11377872720, -43011709110, -160518364740, -606261789828
OFFSET
0,2
COMMENTS
Hankel transform is (-3)^n.
Catalan transform of the sequence (-1)^n*A000244(n). - R. J. Mathar, Nov 11 2008
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*(-4)^k.
G.f.: 2/(5 - 3*sqrt(1-4*x)). - G. C. Greubel, May 28 2019
MATHEMATICA
CoefficientList[Series[2/(5-3*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(2/(5-3*sqrt(1-4*x))) \\ G. C. Greubel, May 28 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(5-3*Sqrt(1-4*x)) )); // G. C. Greubel, May 28 2019
(Sage) (2/(5-3*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Philippe Deléham, Mar 21 2007
EXTENSIONS
Extended by R. J. Mathar, Nov 11 2008
STATUS
approved