login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A356954
Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities.
5
1, 1, 3, 6, 15, 30, 71, 145, 325, 680
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(4) = 15 multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1,2}} {{1,1,2}} {{1,1,1,2}}
{{1},{1}} {{1,2,3}} {{1,1,2,2}}
{{1},{1,1}} {{1,1,2,3}}
{{1},{1,2}} {{1,2,3,4}}
{{1},{1},{1}} {{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{1},{1,2,2}}
{{1},{1,2,3}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{1},{1},{1,2}}
{{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[Join@@mps/@strnorm[n], And@@normQ/@#&]], {n, 0, 5}]
CROSSREFS
For unrestricted multiplicities we have A034691.
A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Other conditions: A035310, A063834, A330783, A356934, A356938, A356943.
Other types: A055932, A089259, A356945, A356955.
Sequence in context: A183038 A141023 A242172 * A126982 A256281 A034739
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 09 2022
STATUS
approved