OFFSET
0,4
EXAMPLE
The a(1) = 1 through a(6) = 7 set partitions:
{{1}} {{2}} {{3}} {{4}} {{5}} {{6}}
{{1,2}} {{1},{3}} {{2,3}} {{1,2,3}}
{{1},{2}} {{1},{4}} {{1},{5}}
{{2},{3}} {{2},{4}}
{{1},{2,3}}
{{1,2},{3}}
{{1},{2},{3}}
MATHEMATICA
chQ[y_] := Length[y] <= 1 || Union[Differences[y]] == {1};
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[Join@@sps/@Reverse/@Select[IntegerPartitions[n], UnsameQ@@#&], And@@chQ/@#&]], {n, 0, 15}]
CROSSREFS
The initial version is A010054.
For set partitions of {1..n} we have A011782.
The non-strict version is A107742
Not restricting to intervals gives A294617.
A000110 counts set partitions.
A001970 counts multiset partitions of integer partitions.
A356941 counts multiset partitions of integer partitions w/ gapless blocks.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 13 2022
STATUS
approved