OFFSET
1,2
COMMENTS
See A097889 for composite terms. - Reinhard Zumkeller, Mar 30 2010
A169829 is a subsequence. - Reinhard Zumkeller, May 31 2010
The Heinz numbers of the partitions into distinct consecutive integers. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} prime(p_j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: (i) 15 (= 3*5) is in the sequence because it is the Heinz number of the partition [2,3]; (ii) 10 (= 2*5) is not in the sequence because it is the Heinz number of the partition [1,3]. - Emeric Deutsch, Oct 02 2015
Except for the term 1, each term can uniquely represented as A002110(k)/A002110(m) for k > m >= 0; 1 = A002110(k)/A002110(k) for all k. - Michel Marcus and Jianing Song, Jun 19 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Oct 24 2012
EXAMPLE
105 is a term, as 105 = 3*5*7 with consecutive prime factors.
MAPLE
isA073485 := proc(n)
local plist, p, i ;
plist := sort(convert(numtheory[factorset](n), list)) ;
for i from 1 to nops(plist) do
p := op(i, plist) ;
if modp(n, p^2) = 0 then
return false;
end if;
if i > 1 then
if nextprime(op(i-1, plist)) <> p then
return false;
end if;
end if;
end do:
true;
end proc:
for n from 1 to 1000 do
if isA073485(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Jan 12 2016
# second Maple program:
q:= proc(n) uses numtheory; n=1 or issqrfree(n) and (s->
nops(s)=1+pi(max(s))-pi(min(s)))(factorset(n))
end:
select(q, [$1..288])[]; # Alois P. Heinz, Jan 27 2022
MATHEMATICA
f[n_] := FoldList[ Times, 1, Prime[ Range[n, n + 3]]]; lst = {}; k = 1; While[k < 55, AppendTo[lst, f@k]; k++ ]; Take[ Union@ Flatten@ lst, 65] (* Robert G. Wilson v, Jun 11 2010 *)
PROG
(Haskell)
a073485 n = a073485_list !! (n-1)
a073485_list = filter ((== 1) . a192280) [1..]
-- Reinhard Zumkeller, May 28 2012, Aug 26 2011
(PARI) list(lim)=my(v=List(primes(primepi(lim))), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); listput(v, t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Aug 03 2002
EXTENSIONS
Alternative description added to the name by Antti Karttunen, Oct 29 2016
STATUS
approved