login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073485
Product of any number of consecutive primes; squarefree numbers with no gaps in their prime factorization.
35
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233
OFFSET
1,2
COMMENTS
A073484(a(n)) = 0 and A073483(a(n)) = 1;
See A097889 for composite terms. - Reinhard Zumkeller, Mar 30 2010
A169829 is a subsequence. - Reinhard Zumkeller, May 31 2010
a(A192280(n)) = 1: complement of A193166.
Also fixed points of A053590: a(n) = A053590(a(n)). - Reinhard Zumkeller, May 28 2012
The Heinz numbers of the partitions into distinct consecutive integers. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} prime(p_j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: (i) 15 (= 3*5) is in the sequence because it is the Heinz number of the partition [2,3]; (ii) 10 (= 2*5) is not in the sequence because it is the Heinz number of the partition [1,3]. - Emeric Deutsch, Oct 02 2015
Except for the term 1, each term can uniquely represented as A002110(k)/A002110(m) for k > m >= 0; 1 = A002110(k)/A002110(k) for all k. - Michel Marcus and Jianing Song, Jun 19 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Oct 24 2012
EXAMPLE
105 is a term, as 105 = 3*5*7 with consecutive prime factors.
MAPLE
isA073485 := proc(n)
local plist, p, i ;
plist := sort(convert(numtheory[factorset](n), list)) ;
for i from 1 to nops(plist) do
p := op(i, plist) ;
if modp(n, p^2) = 0 then
return false;
end if;
if i > 1 then
if nextprime(op(i-1, plist)) <> p then
return false;
end if;
end if;
end do:
true;
end proc:
for n from 1 to 1000 do
if isA073485(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Jan 12 2016
# second Maple program:
q:= proc(n) uses numtheory; n=1 or issqrfree(n) and (s->
nops(s)=1+pi(max(s))-pi(min(s)))(factorset(n))
end:
select(q, [$1..288])[]; # Alois P. Heinz, Jan 27 2022
MATHEMATICA
f[n_] := FoldList[ Times, 1, Prime[ Range[n, n + 3]]]; lst = {}; k = 1; While[k < 55, AppendTo[lst, f@k]; k++ ]; Take[ Union@ Flatten@ lst, 65] (* Robert G. Wilson v, Jun 11 2010 *)
PROG
(Haskell)
a073485 n = a073485_list !! (n-1)
a073485_list = filter ((== 1) . a192280) [1..]
-- Reinhard Zumkeller, May 28 2012, Aug 26 2011
(PARI) list(lim)=my(v=List(primes(primepi(lim))), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); listput(v, t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012
CROSSREFS
Complement: A193166.
Intersection of A005117 and A073491.
Subsequence of A277417.
Cf. A000040, A006094, A002110, A097889, A169829 (subsequences).
Cf. A096334.
Sequence in context: A260442 A359397 A098962 * A377201 A062101 A330597
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Aug 03 2002
EXTENSIONS
Alternative description added to the name by Antti Karttunen, Oct 29 2016
STATUS
approved