login
A377201
Numbers k such that d(k)^k == d(k) (mod k), where d(k) = A000005(k) is the number of divisors of k.
1
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 23, 29, 31, 36, 37, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 83, 85, 89, 91, 97, 101, 103, 105, 107, 109, 113, 120, 121, 127, 131, 132, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 231, 233, 239, 241
OFFSET
1,2
COMMENTS
From Jianing Song, Nov 17 2024: (Start)
Includes all primes.
For a prime p and e with (p,e) != (2,1), p^e is a term if and only if e+1 is an order-e base-p Wieferich prime, i.e., (e+1)^(p-1) == 1 (mod p^e). For example, p^2 is a term if and only if p is in A014127.
Are there other square terms than 1, 36, 121, and 1006003^2? (End)
LINKS
EXAMPLE
6 is in this sequence because d(6) = 4 and 4^6 = 2^12 = 4096 == 4 (mod 6).
MATHEMATICA
Select[Range[300], PowerMod[DivisorSigma[0, #], #, #] == Mod[DivisorSigma[0, #], #] &] (* Stefano Spezia, Oct 20 2024 *)
PROG
(Magma) [k: k in [1..300] | #Divisors(k)^k mod k eq #Divisors(k) mod k];
(PARI) isA377201(k) = my(d = numdiv(k)); Mod(d, k)^k == d
CROSSREFS
Sequence in context: A359397 A098962 A073485 * A062101 A330597 A352336
KEYWORD
nonn,easy,changed
AUTHOR
EXTENSIONS
Terms 1, 2 prepended by Jianing Song, Nov 17 2024
STATUS
approved