OFFSET
0,3
COMMENTS
A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/Product_{k>=1} (1 - x^k)^A034296(k). - Andrew Howroyd, Dec 30 2022
EXAMPLE
The a(1) = 1 through a(4) = 13 multiset partitions:
{{1}} {{2}} {{3}} {{4}}
{{1,1}} {{1,2}} {{2,2}}
{{1},{1}} {{1,1,1}} {{1,1,2}}
{{1},{2}} {{1},{3}}
{{1},{1,1}} {{2},{2}}
{{1},{1},{1}} {{1,1,1,1}}
{{1},{1,2}}
{{2},{1,1}}
{{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1},{2}}
{{1},{1},{1,1}}
{{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nogapQ[m_]:=Or[m=={}, Union[m]==Range[Min[m], Max[m]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], And@@nogapQ/@#&]], {n, 0, 5}]
PROG
(PARI) \\ Here G(n) gives A034296 as vector
G(N) = Vec(sum(n=1, N, x^n/(1-x^n) * prod(k=1, n-1, 1+x^k+O(x*x^(N-n))) ));
seq(n) = {my(u=G(n)); Vec(1/prod(k=1, n-1, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 11 2022
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Dec 30 2022
STATUS
approved