Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 30 2022 21:38:23
%S 1,1,3,6,13,24,49,88,166,297,534,932,1635,2796,4782,8060,13521,22438,
%T 37080,60717,98979,160216,258115,413382,659177,1045636,1651891,
%U 2597849,4069708,6349677,9871554,15290322,23604794,36318256,55705321,85177643,129865495
%N Number of multiset partitions of integer partitions of n such that all blocks are gapless.
%C A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.
%H Andrew Howroyd, <a href="/A356941/b356941.txt">Table of n, a(n) for n = 0..1000</a>
%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a>
%F G.f.: 1/Product_{k>=1} (1 - x^k)^A034296(k). - _Andrew Howroyd_, Dec 30 2022
%e The a(1) = 1 through a(4) = 13 multiset partitions:
%e {{1}} {{2}} {{3}} {{4}}
%e {{1,1}} {{1,2}} {{2,2}}
%e {{1},{1}} {{1,1,1}} {{1,1,2}}
%e {{1},{2}} {{1},{3}}
%e {{1},{1,1}} {{2},{2}}
%e {{1},{1},{1}} {{1,1,1,1}}
%e {{1},{1,2}}
%e {{2},{1,1}}
%e {{1},{1,1,1}}
%e {{1,1},{1,1}}
%e {{1},{1},{2}}
%e {{1},{1},{1,1}}
%e {{1},{1},{1},{1}}
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
%t Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@nogapQ/@#&]],{n,0,5}]
%o (PARI) \\ Here G(n) gives A034296 as vector
%o G(N) = Vec(sum(n=1, N, x^n/(1-x^n) * prod(k=1, n-1, 1+x^k+O(x*x^(N-n))) ));
%o seq(n) = {my(u=G(n)); Vec(1/prod(k=1, n-1, (1 - x^k + O(x*x^n))^u[k])) } \\ _Andrew Howroyd_, Dec 30 2022
%Y A000041 counts integer partitions, strict A000009.
%Y A000670 counts patterns, ranked by A333217, necklace A019536.
%Y A001055 counts factorizations.
%Y A011782 counts multisets covering an initial interval.
%Y A356069 counts gapless divisors, initial A356224 (complement A356225).
%Y Gapless multisets are counted by A034296, ranked by A073491.
%Y Other types: A356233, A356942, A356943, A356944.
%Y Other conditions: A001970, A006171, A007294, A089259, A107742, A356932.
%Y Cf. A055887, A072233, A270995.
%K nonn
%O 0,3
%A _Gus Wiseman_, Sep 11 2022
%E Terms a(11) and beyond from _Andrew Howroyd_, Dec 30 2022