OFFSET
1,2
COMMENTS
Here Pell(n) = A000129(n).
FORMULA
G.f.: Sum_{n>=1} Pell(n) * x^n / (1 - x^n).
G.f.: Sum_{n>=1} x^n / (1 - 2*x^n - x^(2*n)).
G.f.: Sum_{n>=1} x^n * Sum_{d|n} (2 + x^d)^(n/d-1).
Sum_{d|n} Moebius(n/d) * a(d) = Pell(n) for n>=1.
a(n) = Sum_{d|n} Pell(d).
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 6*x^3 + 15*x^4 + 30*x^5 + 78*x^6 + 170*x^7 +...
where by definition
A(x) = x/(1-x) + 2*x^2/(1-x^2) + 5*x^3/(1-x^3) + 12*x^4/(1-x^4) + 29*x^5/(1-x^5) + 70*x^6/(1-x^6) + 169*x^7/(1-x^7) + 408*x^8/(1-x^8) + 985*x^9/(1-x^9) + 2378*x^10/(1-x^10) +...+ Pell(n)*x^n/(1-x^n) +...
The g.f. is also given by the series:
A(x) = x/(1-2*x-x^2) + x^2/(1-2*x^2-x^4) + x^3/(1-2*x^3-x^6) + x^4/(1-2*x^4-x^8) + x^5/(1-2*x^5-x^10) + x^6/(1-2*x^6-x^12) + x^7/(1-2*x^7-x^14) +...+ x^n/(1-x^n-x^(2*n)) +...
It is interesting to note that the ODD TERMS occur at A028982(n):
[1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, ...];
i.e., those numbers k such that sum of divisors of k is odd.
PROG
(PARI) Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)), n)
a(n) = sumdiv(n, d, Pell(d))
for(n=1, 40, print1(a(n), ", "))
(PARI) Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)), n)
a(n) = polcoeff(sum(m=1, n, Pell(m)*x^m/(1-x^m +x*O(x^n))), n)
for(n=1, 40, print1(a(n), ", "))
(PARI) a(n) = polcoeff(sum(m=1, n, x^m/(1-2*x^m-x^(2*m) +x*O(x^n)) ), n)
for(n=1, 40, print1(a(n), ", "))
(PARI) a(n) = local(A=x+x^2); A=sum(m=1, n, x^m*sumdiv(m, d, (2 + x^d +x*O(x^n))^((m/d-1)))); polcoeff(A, n)
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 02 2015
STATUS
approved