login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A256280
Expansion of phi(q^3)^4 / (phi(q) * phi(q^9)) in powers of q where phi() is a Ramanujan theta function.
5
1, -2, 4, 0, -2, 8, 0, 0, 4, 4, -4, 0, 0, -4, 0, 0, -2, 8, 4, 0, 8, 0, 0, 0, 0, -6, 8, 0, 0, 8, 0, 0, 4, 0, -4, 0, 4, -4, 0, 0, -4, 8, 0, 0, 0, 8, 0, 0, 0, -2, 12, 0, -4, 8, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, -2, 16, 0, 0, 8, 0, 0, 0, 4, -4, 8, 0, 0, 0, 0, 0, 8
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) * eta(q^4) * eta(q^6)^10 * eta(q^9) * eta(q^36))^2 / (eta(q^2)^5 * eta(q^3)^8 * eta(q^12)^8 * eta(q^18)^5) in powers of q.
Euler transform of period 36 sequence [ -2, 3, 6, 1, -2, -9, -2, 1, 4, 3, -2, -3, -2, 3, 6, 1, -2, -6, -2, 1, 6, 3, -2, -3, -2, 3, 4, 1, -2, -9, -2, 1, 6, 3, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(3*n + 1) = -2 * A122865(n). a(3*n + 2) = 4 * A122856(n). a(4*n + 3) = 0. a(4*n) = a(n). a(9*n) = A004018(n). a(9*n + 3) = a(9*n + 6) = 0. a(12*n + 1) = -2 * A002175(n). a(12*n + 5) = 8 * A121444(n).
EXAMPLE
G.f. = 1 - 2*q + 4*q^2 - 2*q^4 + 8*q^5 + 4*q^8 + 4*q^9 - 4*q^10 - 4*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^4 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9]), {q, 0, n}];
PROG
(PARI) {a(n) = if( n<1, n==0, (-2)^(n%3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^10 * eta(x^9 + A) * eta(x^36 + A))^2 / (eta(x^2 + A)^5 * eta(x^3 + A)^8 * eta(x^12 + A)^8 * eta(x^18 + A)^5), n))};
(Magma) A := Basis( ModularForms( Gamma1(36), 1), 91); A[1] - 2*A[2] + 4*A[3] - 2*A[5] + 8*A[6] + 4*A[9] + 4*A[10] - 4*A[11] - 4*A[14] - 2*A[17] + 8*A[18] + 4*A[19];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 02 2015
STATUS
approved