login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153182
Number of overpartitions of n with even M2-rank minus the number of overpartitions of n with odd M2-rank.
2
1, 2, 4, 0, -2, 8, 8, -8, -4, 10, 8, 0, -8, 8, 16, -16, -10, 16, 12, 0, -8, 16, 8, -24, -8, 10, 24, 0, -16, 24, 16, -24, -20, 16, 16, 0, -10, 8, 24, -32, -8, 32, 16, 0, -24, 24, 16, -40, -24, 18, 28, 0, -8, 24, 32, -32, -16, 16, 8, 0, -32, 24, 32, -40, -26, 32
OFFSET
0,2
COMMENTS
a(8n+3) = 0.
FORMULA
G.f.: 1 + 2Sum_{n >= 1} q^n(1+q)(1+q^3)...(1+q^(2n-1))/((1+q^2)(1+q^4)...(1+q^(2n))^2).
G.f.: (1 + 8 * Sum_{k>0} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (1 + 2 * Sum_{k>0} (-1)^k * x^k^2). - Michael Somos, Jul 13 2015
a(4*n) = A256624(n) = 2 * a(n) - A005875(n). - Michael Somos, Jul 13 2015
a(8*n + 1) = 2 * A213022(n). a(8*n + 2) = 4 * A213625(n). a(8*n + 5) = 8 * A045831(n). a(8*n + 6) = 8 * A213624(n). - Michael Somos, Jul 13 2015
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 - 2*x^4 + 8*x^5 + 8*x^6 - 8*x^7 - 4*x^8 + ...
MATHEMATICA
a[n_]:= If[n < 0, 0, SeriesCoefficient[(1 + 8*Sum[(-1)^k x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, (Sqrt[4 n + 1] - 1)/2}])/EllipticTheta[4, 0, x], {x, 0, n}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 29 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 8 * sum(k=1, sqrtint(n+1)-1, (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2, A)) / (1 + 2 * sum(k=1, sqrtint(n), (-1)^k * x^k^2, A)), n))}; /* Michael Somos, Jul 13 2015 */
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, n, x^k / (1 + x^(2*k)) * prod(j=1, k, (1 + x^(2*j - 1)) / (1 + x^(2*j)), 1 + x * O(x^(n-k)))), n))}; /* Michael Somos, Jul 13 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Jeremy Lovejoy, Dec 20 2008
STATUS
approved