login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A153180
a(n) = L(13n)/L(n) where L(n) = Lucas number A000204(n).
3
521, 90481, 35355581, 10525900321, 3489827263001, 1111126318086721, 359316586176453881, 115509240442846111681, 37216910406644366498621, 11980863523543017476802001, 3858153294795970321295258921
OFFSET
1,1
COMMENTS
All numbers in this sequence are:
congruent to 1 mod 10
congruent to 1 mod 100 (iff n is congruent to 0 mod 5),Q congruent to 21 mod 100 (iff n is congruent to 1 or 4 mod 5),
congruent to 81 mod 100 (iff n is congruent to 2 or 3 mod 5).Q
LINKS
Index entries for linear recurrences with constant coefficients, signature (233, 33552, -1493064, -27372840, 186135312, 488605194, -488605194, -186135312, 27372840, 1493064, -33552, -233, 1).
FORMULA
a(n)= +233*a(n-1) +33552*a(n-2) -1493064*a(n-3) -27372840*a(n-4) +186135312*a(n-5) +488605194*a(n-6) -488605194*a(n-7) -186135312*a(n-8) +27372840*a(n-9) +1493064*a(n-10) -33552*a(n-11) -233*a(n-12) +a(n-13). G.f.: -1+ (-2-123*x)/(x^2+123*x+1) +(2-322*x)/(x^2-322*x+1) +(-2-3*x)/(x^2+3*x+1) +(2-7*x)/(x^2-7*x+1) +(2-47*x)/(x^2-47*x+1) -1/(x-1)+ (-2-18*x)/(x^2+18*x+1). [From R. J. Mathar, Oct 22 2010]
MATHEMATICA
Table[LucasL[13 n]/LucasL[n], {n, 1, 150}]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 20 2008
STATUS
approved