login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = L(13n)/L(n) where L(n) = Lucas number A000204(n).
3

%I #6 Mar 16 2017 12:18:10

%S 521,90481,35355581,10525900321,3489827263001,1111126318086721,

%T 359316586176453881,115509240442846111681,37216910406644366498621,

%U 11980863523543017476802001,3858153294795970321295258921

%N a(n) = L(13n)/L(n) where L(n) = Lucas number A000204(n).

%C All numbers in this sequence are:

%C congruent to 1 mod 10

%C congruent to 1 mod 100 (iff n is congruent to 0 mod 5),Q congruent to 21 mod 100 (iff n is congruent to 1 or 4 mod 5),

%C congruent to 81 mod 100 (iff n is congruent to 2 or 3 mod 5).Q

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (233, 33552, -1493064, -27372840, 186135312, 488605194, -488605194, -186135312, 27372840, 1493064, -33552, -233, 1).

%F a(n)= +233*a(n-1) +33552*a(n-2) -1493064*a(n-3) -27372840*a(n-4) +186135312*a(n-5) +488605194*a(n-6) -488605194*a(n-7) -186135312*a(n-8) +27372840*a(n-9) +1493064*a(n-10) -33552*a(n-11) -233*a(n-12) +a(n-13). G.f.: -1+ (-2-123*x)/(x^2+123*x+1) +(2-322*x)/(x^2-322*x+1) +(-2-3*x)/(x^2+3*x+1) +(2-7*x)/(x^2-7*x+1) +(2-47*x)/(x^2-47*x+1) -1/(x-1)+ (-2-18*x)/(x^2+18*x+1). [From _R. J. Mathar_, Oct 22 2010]

%t Table[LucasL[13 n]/LucasL[n], {n, 1, 150}]

%Y A000032, A000204, A047221, A110391, A153173, A153175, A153177, A153179.

%K nonn

%O 1,1

%A _Artur Jasinski_, Dec 20 2008