OFFSET
1,1
COMMENTS
p and q cannot both be odd. Thus p=2 or q=2. There are no primes of the form 2^9 + q^2 other than 3^2 + 2^9 = 521. Hence all solutions are of the form 2^2 + q^9.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
a(1) = 3^2 + 2^9 = 521.
a(2) = 2^2 + 3^9 = 19687.
a(3) = 2^2 + 7^9 = 40353611.
a(4) = 2^2 + 67^9 = 27206534396294951.
a(5) = 2^2 + 73^9 = 58871586708267917.
a(6) = 2^2 + 453^9 = 803311192691904837821737.
MATHEMATICA
s = {521}; Do[ pq = Prime@p^9 + 4; If[ PrimeQ@pq, AppendTo[s, pq]], {p, 300}]; s (* Robert G. Wilson v *)
Join[{521}, Select[Prime[Range[300]]^9+4, PrimeQ]] (* Harvey P. Dale, Apr 11 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 23 2006
EXTENSIONS
More terms from Robert G. Wilson v, Sep 26 2006
STATUS
approved