login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045700
Primes of form p^2+q^3 where p and q are primes.
12
17, 31, 347, 6863, 493043, 1092731, 1295033, 21253937, 22665191, 38272757, 54439943, 115501307, 904231067, 1121622323, 2738124203, 3067586681, 3301293173, 3673650011, 4549540397, 4599141251, 6507781367, 7222633241
OFFSET
1,1
COMMENTS
p and q cannot both be odd, thus p=2 or q=2. If q=2 then we want primes of form p^2+8. But 8=-1 mod 3. Since p is prime, p=3 or == 1 or 2 mod 3. If p=1 or 2 mod 3 then 3|p^2+8, so p=3. Therefore with the exception of the first entry (3^2+8=17) this sequence is really just primes of the form q^3+4.
LINKS
FORMULA
Primes in A045699.
EXAMPLE
a(4) = 6863 = 19^3 + 2^2.
MAPLE
for n from 1 to 1000 do if (isprime((ithprime(n))^3+4)) then print((ithprime(n))^3+4, 4); fi; if (isprime((ithprime(n))^2+8)) then print((ithprime(n))^2+8, 8); fi; od;
MATHEMATICA
Join[{17}, Select[Prime[Range[300]]^3+4, PrimeQ]] (* Harvey P. Dale, Jul 20 2011 *)
PROG
(PARI) list(lim)=my(v=List([17]), t); lim\=1; forprime(p=3, sqrtnint(lim\1-4, 3), if(isprime(t=p^3+4), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
Cf. A045699.
Sequence in context: A339181 A027722 A060342 * A146800 A146731 A146667
KEYWORD
nice,nonn,easy
AUTHOR
EXTENSIONS
Extension and comment from Joe DeMaio (jdemaio(AT)kennesaw.edu)
STATUS
approved