login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045700 Primes of form p^2+q^3 where p and q are primes. 12
17, 31, 347, 6863, 493043, 1092731, 1295033, 21253937, 22665191, 38272757, 54439943, 115501307, 904231067, 1121622323, 2738124203, 3067586681, 3301293173, 3673650011, 4549540397, 4599141251, 6507781367, 7222633241 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

p and q cannot both be odd, thus p=2 or q=2. If q=2 then we want primes of form p^2+8. But 8=-1 mod 3. Since p is prime, p=3 or == 1 or 2 mod 3. If p=1 or 2 mod 3 then 3|p^2+8, so p=3. Therefore with the exception of the first entry (3^2+8=17) this sequence is really just primes of the form q^3+4.

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

FORMULA

Primes in A045699.

EXAMPLE

a(4) = 6863 = 19^3 + 2^2.

MAPLE

for n from 1 to 1000 do if (isprime((ithprime(n))^3+4)) then print((ithprime(n))^3+4, 4); fi; if (isprime((ithprime(n))^2+8)) then print((ithprime(n))^2+8, 8); fi; od;

MATHEMATICA

Join[{17}, Select[Prime[Range[300]]^3+4, PrimeQ]] (* Harvey P. Dale, Jul 20 2011 *)

PROG

(PARI) list(lim)=my(v=List([17]), t); lim\=1; forprime(p=3, sqrtnint(lim\1-4, 3), if(isprime(t=p^3+4), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

CROSSREFS

Cf. A045699.

Sequence in context: A339181 A027722 A060342 * A146800 A146731 A146667

Adjacent sequences:  A045697 A045698 A045699 * A045701 A045702 A045703

KEYWORD

nice,nonn,easy

AUTHOR

Felice Russo

EXTENSIONS

Extension and comment from Joe DeMaio (jdemaio(AT)kennesaw.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 13:32 EDT 2021. Contains 348049 sequences. (Running on oeis4.)