login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045700 Primes of form p^2+q^3 where p and q are primes. 12

%I

%S 17,31,347,6863,493043,1092731,1295033,21253937,22665191,38272757,

%T 54439943,115501307,904231067,1121622323,2738124203,3067586681,

%U 3301293173,3673650011,4549540397,4599141251,6507781367,7222633241

%N Primes of form p^2+q^3 where p and q are primes.

%C p and q cannot both be odd, thus p=2 or q=2. If q=2 then we want primes of form p^2+8. But 8=-1 mod 3. Since p is prime, p=3 or == 1 or 2 mod 3. If p=1 or 2 mod 3 then 3|p^2+8, so p=3. Therefore with the exception of the first entry (3^2+8=17) this sequence is really just primes of the form q^3+4.

%H Ray Chandler, <a href="/A045700/b045700.txt">Table of n, a(n) for n = 1..10000</a>

%F Primes in A045699.

%e a(4) = 6863 = 19^3 + 2^2.

%p for n from 1 to 1000 do if (isprime((ithprime(n))^3+4)) then print((ithprime(n))^3+4,4); fi; if (isprime((ithprime(n))^2+8)) then print((ithprime(n))^2+8,8); fi; od;

%t Join[{17},Select[Prime[Range[300]]^3+4,PrimeQ]] (* _Harvey P. Dale_, Jul 20 2011 *)

%o (PARI) list(lim)=my(v=List([17]), t); lim\=1; forprime(p=3,sqrtnint(lim\1-4,3), if(isprime(t=p^3+4), listput(v, t))); Set(v) \\ _Charles R Greathouse IV_, Feb 07 2017

%Y Cf. A045699.

%K nice,nonn,easy

%O 1,1

%A _Felice Russo_

%E Extension and comment from Joe DeMaio (jdemaio(AT)kennesaw.edu)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)