login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of form p^2+q^3 where p and q are primes.
12

%I #14 Feb 07 2017 17:35:08

%S 17,31,347,6863,493043,1092731,1295033,21253937,22665191,38272757,

%T 54439943,115501307,904231067,1121622323,2738124203,3067586681,

%U 3301293173,3673650011,4549540397,4599141251,6507781367,7222633241

%N Primes of form p^2+q^3 where p and q are primes.

%C p and q cannot both be odd, thus p=2 or q=2. If q=2 then we want primes of form p^2+8. But 8=-1 mod 3. Since p is prime, p=3 or == 1 or 2 mod 3. If p=1 or 2 mod 3 then 3|p^2+8, so p=3. Therefore with the exception of the first entry (3^2+8=17) this sequence is really just primes of the form q^3+4.

%H Ray Chandler, <a href="/A045700/b045700.txt">Table of n, a(n) for n = 1..10000</a>

%F Primes in A045699.

%e a(4) = 6863 = 19^3 + 2^2.

%p for n from 1 to 1000 do if (isprime((ithprime(n))^3+4)) then print((ithprime(n))^3+4,4); fi; if (isprime((ithprime(n))^2+8)) then print((ithprime(n))^2+8,8); fi; od;

%t Join[{17},Select[Prime[Range[300]]^3+4,PrimeQ]] (* _Harvey P. Dale_, Jul 20 2011 *)

%o (PARI) list(lim)=my(v=List([17]), t); lim\=1; forprime(p=3,sqrtnint(lim\1-4,3), if(isprime(t=p^3+4), listput(v, t))); Set(v) \\ _Charles R Greathouse IV_, Feb 07 2017

%Y Cf. A045699.

%K nice,nonn,easy

%O 1,1

%A _Felice Russo_

%E Extension and comment from Joe DeMaio (jdemaio(AT)kennesaw.edu)